The Potential of Sorafenib in Preventing Metabolic Syndrome in Rats Fed a High-Fat High-Sucrose Diet

Adnan Iqbal, Rahila Najam, Shabana Simjee, Saira Saeed Khan, Azfar Ather Ishaqui, Salman Ashfaq Ahmed, Zeeshan Ahmed, Shayan Ahmed, Salman Ahmed, Muhammad Osama, Bilal Jawed

Abstract

The purpose of this study was to investigate the possible preventive role of sorafenib in preventing obesity, hyperlipidemia, and diabetes by exploring its preventive effects. As there is a rapid increase in the number of people being affected by these diseases, there is a need to find new methods to manage them. Sorafenib has been demonstrated to be a potent inhibitor of ABCC10 transmembrane protein in several studies. A recent study has shown that ABCC10 contributes to the pathogenesis of both hyperglycemia and hyperlipidemia. Additionally, many patients who have cancer also are affected by the metabolic syndrome. Thus, cancer patients must take medicines to control high cholesterol and glucose levels, thus increasing the burden of medicines on cancer patients. As sorafenib is an anti-cancer drug and a potent inhibitor of ABCC10, it may prevent metabolic syndrome in cancer patients, thus reducing the burden of additional medications and their adverse effects. This study’s objective was to determine whether sorafenib can lower high lipid and high glucose levels in rats given a high-fat high-sugar diet. There were four groups of the rats: Group I: control (Standard Diet); Group II: diabetic (type-2) rats were given high-fat diet feed and sucrose through drinking water (25% sucrose) for 60 days (HFSD); Group III: diabetic (type-2) rats were given sorafenib 10 mg/kg/d (orally) for 60 days (HFS-S); Group IV: diabetic (type-2) rats were given metformin (50 mg/kg/d). Blood glucose, insulin, triglyceride, cholesterol, and liver enzyme levels were measured. Histopathological analysis of the liver was also conducted using an optical microscope. There was a significant weight reduction when sorafenib was administered to rats. The treatment produces a significant improvement in triglycerides (TG), total cholesterol (TC), and low-density lipoproteins (LDL) (P < 0.05). Furthermore, it also lowers blood glucose levels and improves insulin sensitivity (P < 0.05). Moreover, hepatic steatosis was also prevented by sorafenib in the histopathological analysis of the liver. According to our study, the effects of sorafenib were significant in improving dyslipidemia, hyperglycemia, and insulin sensitivity, as well as preventing the accumulation of fatty deposits in the rats' liver tissue when sorafenib was administered with a high-fat sucrose diet.

 

Keywords: sorafenib, ABCC10, cancer, hyperlipidemia, metabolic syndrome.

 

https://doi.org/10.55463/issn.1674-2974.49.8.13


Full Text:

PDF


References


LIN M., & JIN J. Cancer, obesity, and diabetes: TKIs exert multiple effects on glucose homeostasis. Nature Reviews Clinical Oncology, 2017, 14(5): 268. https://doi.org/10.1038/nrclinonc.2017.56

ŠTEFKOVÁ J., POLEDNE R., and HUBÁČEK J. A. ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiological Research, 2004, 53(3): 235-243. https://www.biomed.cas.cz/physiolres/2004/issue3/stefkova.htm

GU R.-X., CORRADI V., SINGH G., CHOUDHURY H. G., BEIS K., and TIELEMAN D. P. Conformational changes of the antibacterial peptide ATP binding cassette transporter McjD revealed by molecular dynamics simulations. Biochemistry, 2015, 54(38): 5989-5998. https://doi.org/10.1021/acs.biochem.5b00753

TAYLOR N. M., MANOLARIDIS I., JACKSON S. M., KOWAL J., STAHLBERG H., and LOCHER K. P. Structure of the human multidrug transporter ABCG2. Nature, 2017, 546(7659): 504-509. https://doi.org/10.1038/nature22345

XIONG J., FENG J., YUAN D., ZHOU J., and MIAO W. Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily. Scientific Reports, 2015, 5(1): 16724. https://doi.org/10.1038/srep16724

IRAM S. H., GRUBER S. J., RAGUIMOVA O. N., THOMAS D. D., and ROBIA S. L. ATP–Binding Cassette Transporter Structure Changes Detected by Intramolecular Fluorescence Energy Transfer for High-Throughput Screening. Molecular Pharmacology, 2015, 88(1): 84-94. https://doi.org/10.1124/mol.114.096792

SAHA J., SENGUPTA A., GUPTA K., and GUPTA B. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress. Computational Biology and Chemistry, 2015, 54: 18-32. https://doi.org/10.1016/j.compbiolchem.2014.11.005

LIU H., CHENG M., ZHAO S., LIN C., SONG J., and YANG Q. ATP-Binding Cassette Transporter Regulates N,N′-Diacetylchitobiose Transportation and Chitinase Production in Trichoderma Asperellum T4. International Journal of Molecular Sciences, 2019, 20(10): 2412. https://doi.org/10.3390/ijms20102412

LAUB K. R., MAREK M., STANCHEV L. D., HERRERA S. A., KANASHOVA T., BOURMAUD A., DITTMAR G., and GÜNTHER POMORSKI T. Purification and characterisation of the yeast plasma membrane ATP binding cassette transporter Pdr11p. PLoS ONE, 2017, 12(9): e0184236. https://doi.org/10.1371/journal.pone.0184236

HARRIS M. T., HUSSAIN S. S., INOUYE C. M., CASTLE A. M., and CASTLE J. D. Reinterpretation of the localization of the ATP binding cassette transporter ABCG1 in insulin-secreting cells and insights regarding its trafficking and function. PLoS ONE, 2018, 13(9): e0198383. https://doi.org/10.1371/journal.pone.0198383

CHEN Y., ZHANG L., LIU W., and WANG K. Case-control study of metabolic syndrome and ovarian cancer in Chinese population. Nutrition & Metabolism, 2017, 14(1): 21. https://doi.org/10.1186/s12986-017-0176-4

XIONG T., XU G., HUANG X. L., LU K. Q., XIE W. Q., YIN K., and TU J. ATP‑binding cassette transporter A1: A promising therapy target for prostate cancer. Molecular and Clinical Oncology, 2018, 8(1): 9-14. https://doi.org/10.3892/mco.2017.1506

MALVI P., CHAUBE B., SINGH S. V., MOHAMMAD N., PANDEY V., VIJAYAKUMAR M. V., RADHAKRISHNAN R. M., VANUOPADATH M., NAIR S. S., NAIR B. G., and BHAT M. K. Weight control interventions improve therapeutic efficacy of dacarbazine in melanoma by reversing obesity-induced drug resistance. Cancer & Metabolism, 2016, 4(1): 21. https://doi.org/10.1186/s40170-016-0162-8

TARLING E. J., DE AGUIAR VALLIM T. Q., and EDWARDS P. A. Role of ABC transporters in lipid transport and human disease. Trends in Endocrinology & Metabolism, 2013, 24(7): 342-350. https://doi.org/10.1016/j.tem.2013.01.006

WESTERTERP M., BOCHEM A. E., YVAN-CHARVET L., MURPHY A. J., WANG N., and TALL A. R. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circulation Research, 2014, 114(1): 157-170. https://doi.org/10.1161/circresaha.114.300738

PAHNKE J., LANGER O., and KROHN M. Alzheimer’s and ABC transporters—new opportunities for diagnostics and treatment. Neurobiology of Disease, 2014, 72: 54-60. https://doi.org/10.1016/j.nbd.2014.04.001

KATHAWALA R. J., WANG Y. J., ASHBY C. R. JR., and CHEN Z. S. Recent advances regarding the role of ABC subfamily C member 10 (ABCC10) in the efflux of antitumor drugs. Chinese Journal of Cancer, 2014, 33(5): 223-230. https://doi.org/10.5732/cjc.013.10122

TAKAYANAGI S., KATAOKA T., OHARA O., OISHI M., KUO M. T., and ISHIKAWA T. Human ATP-binding cassette transporter ABCC10: expression profile and p53-dependent upregulation. Journal of Experimental Therapeutics and Oncology, 2004, 4(3): 239-246. http://www.oldcitypublishing.com/journals/jeto-home/jeto-issue-contents/jeto-volume-4-number-3-2004/jeto-4-3-p-239-246/

EL-ASHMAWY N. E., KHEDR N. F., SALLAM M., and NOSSIER A. I. Effect of activation of liver X receptor alpha on cardiac & hepatic ABCC10 and SLC17A5 drug transporters in hypercholesterolemic rat model. Biochemical and Biophysical Research Communications, 2022, 610: 133-139. https://doi.org/10.1016/j.bbrc.2022.04.046

MALOFEEVA E. V., DOMANITSKAYA N., GUDIMA M., and HOPPER-BORGE E. A. Modulation of the ATPase and transport activities of broad-acting multidrug resistance factor ABCC10 (MRP7). Cancer Research, 2012, 72(24): 6457-6467. https://doi.org/10.1158/0008-5472.CAN-12-1340

GONG L., GIACOMINI M. M., GIACOMINI C., MAITLAND M. L., ALTMAN R. B., and KLEIN T. E. PharmGKB summary: sorafenib pathways. Pharmacogenetics and Genomics, 2017, 27(6): 240-246. https://doi.org/10.1097/fpc.0000000000000279

NATIONAL RESEARCH COUNCIL. Occupational health and safety in the care and use of research animals. The National Academies Press, Washington, District of Columbia, 1997. https://doi.org/10.17226/4988

NISSANKARA RAO L. S., KILARI E. K., and KOLA P. K. Protective effect of Curcuma amada acetone extract against high-fat and high-sugar diet-induced obesity and memory impairment. Nutritional Neuroscience, 2021, 24(3): 212-225. https://doi.org/10.1080/1028415X.2019.1616436

AUGUSTINE A. W., NARASIMHAN A., VISHWANATHAN M., and KARUNDEVI B. Evaluation of antidiabetic property of Andrographis paniculata powder in high fat and sucrose-induced type-2 diabetic adult male rat. Asian Pacific Journal of Tropical Disease, 2014, 4(Suppl 1): S140-S147. https://doi.org/10.1016/S2222-1808(14)60429-1

ZENG Q., SONG J., WANG D., SUN X., XIAO Y., ZHANG H., XIAO Y., ZHOU Z., and DENG T. Identification of Sorafenib as a Treatment for Type 1 Diabetes. Frontiers in Immunology, 2022, 13: 740805. https://doi.org/10.3389/fimmu.2022.740805

GONZÁLEZ MOSQUERA D. M., HERNANDEZ ORTEGA Y., BY B., VICET MURO L., SAUCEDO HERNANDEZ Y., GRAU ÁBALOS R., DEHAEN W., PIETERS L., and APERS S. Antihyperglycemic activity of extracts from Boldoa purpurascens leaves in alloxan‐induced diabetic rats. Phytotherapy Research, 2013, 27(5): 721-724. https://doi.org/10.1002/ptr.4769

ISLAM M. A., AKHTAR M. A., KHAN M. R., HOSSAIN M. S., ALAM A. H., IBNE-WAHED M. I., AMRAN M. S., RAHMAN B. M., and AHMED M. Oral glucose tolerance test (OGTT) in normal control and glucose induced hyperglycemic rats with Coccinia cordifolia L. and Catharanthus roseus L. Pakistan Journal of Pharmaceutical Sciences, 2009, 22(4): 402-404. http://localhost/pjps/wp-content/uploads/pdfs/CD-PJPS-22-4-09/Paper-10.pdf

NARASIMHAN A., CHINNAIYAN M., and KARUNDEVI B. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Applied Physiology, Nutrition, and Metabolism, 2015, 40(8): 769-781. https://doi.org/10.1139/apnm-2015-0002

MATTHEWS D. R., HOSKER J., RUDENSKI A., NAYLOR B., TREACHER D., and TURNER R. C. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985, 28(7): 412-419. https://doi.org/10.1007/bf00280883

HAUG A., & HØSTMARK A. T. Lipoprotein lipases, lipoproteins and tissue lipids in rats fed fish oil or coconut oil. The Journal of Nutrition, 1987, 117(6): 1011-1017. https://doi.org/10.1093/jn/117.6.1011

KLIL-DRORI A. J., AZOULAY L., and POLLAK M. N. Cancer, obesity, diabetes, and antidiabetic drugs: is the fog clearing? Nature Reviews Clinical Oncology, 2017, 14(2): 85-99. https://doi.org/10.1038/nrclinonc.2016.120

ARGILÉS J. M., BUSQUETS S., STEMMLER B., and LOPEZ-SORIANO F. J. Cancer cachexia: understanding the molecular basis. Nature Reviews Cancer, 2014, 14(11): 754-762. https://doi.org/10.1038/nrc3829

CALLE E. E., RODRIGUEZ C., WALKER-THURMOND K., and THUN M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. The New England Journal of Medicine, 2003, 348(17): 1625-1638. https://doi.org/10.1056/nejmoa021423

COHEN J. C., HORTON J. D., and HOBBS H. H. Human fatty liver disease: old questions and new insights. Science, 2011, 332(6037): 1519-1523. https://doi.org/10.1126/science.1204265

ZHANG P., WANG P. X., ZHAO L. P., ZHANG X., JI Y. X., ZHANG X. J., FANG C., LU Y. X., YANG X., GAO M. M., ZHANG Y., TIAN S., ZHU X. Y., GONG J., MA X. L., LI F., WANG Z., HUANG Z., SHE Z. G., and LI H. The deubiquitinating enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis. Science, 2018, 24(1): 84-94. https://doi.org/10.1126/science.1204265

SHAKER M., TABBAA A., ALBELDAWI M., and ALKHOURI N. Liver transplantation for nonalcoholic fatty liver disease: new challenges and new opportunities. World Journal of Gastroenterology, 2014, 20(18): 5320-5330. https://doi.org/10.3748/wjg.v20.i18.5320

WANG P. X., JI Y. X., ZHANG X. J., ZHAO L. P., YAN Z. Z., ZHANG P., SHEN L. J., YANG X., FANG J., TIAN S., ZHU X. Y., GONG J., ZHANG X., WEI Q. F., WANG Y., LI J., WAN L., XIE Q., SHE Z. G., WANG Z., HUANG Z., and LI H. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nature Medicine, 2017, 23(4): 439-449. https://doi.org/10.1038/nm.4290

CAI J., XU M., ZHANG X., and LI H. Innate immune signaling in nonalcoholic fatty liver disease and cardiovascular diseases. Annual Review of Pathology: Mechanisms of Disease, 2019, 14: 153-184. https://doi.org/10.1146/annurev-pathmechdis-012418-013003

JI Y. X., HUANG Z., YANG X., WANG X., ZHAO L. P., WANG P. X., ZHANG X. J., ALVES-BEZERRA M., CAI L., ZHANG P., LU Y. X., BAI L., GAO M. M., ZHAO H., TIAN S., WANG Y., HUANG Z. X., ZHU X. Y., ZHANG Y., GONG J., SHE Z. G., LI F., COHEN D. E., and LI H. The deubiquitinating enzyme cylindromatosis mitigates nonalcoholic steatohepatitis. Nature Medicine, 2018, 24(2): 213-223. https://doi.org/10.1038/nm.4461

ZHAO G. N., ZHANG P., GONG J., ZHANG X. J., WANG P. X., YIN M., JIANG Z., SHEN L. J., JI Y. X., TONG J., WANG Y., WEI Q. F., WANG Y., ZHU X. Y., ZHANG X., FANG J., XIE Q., SHE Z. G., WANG Z., HUANG Z., and LI H. Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4. Nature Medicine, 2017, 23(6): 742-752. https://doi.org/10.1038/nm.4334

SHLOMAI G., NEEL B., LEROITH D., and GALLAGHER E. J. Type 2 diabetes mellitus and cancer: the role of pharmacotherapy. Journal of Clinical Oncology, 2016, 34(35): 4261-4269. https://doi.org/10.1200/jco.2016.67.4044

MALEK R., & DAVIS S. N. Tyrosine kinase inhibitors under investigation for the treatment of type II diabetes. Expert Opinion on Investigational Drugs, 2016, 25(3): 287-296. https://doi.org/10.1517/13543784.2016.1142531

SAGLIO G., KIM D. W., ISSARAGRISIL S., LE COUTRE P., ETIENNE G., LOBO C., PASQUINI R., CLARK R. E., HOCHHAUS A., HUGHES T. P., GALLAGHER N., HOENEKOPP A., DONG M., HAQUE A., LARSON R. A., KANTARJIAN H. M., and ENESTND INVESTIGATORS. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. The New England Journal of Medicine, 2010, 362(24): 2251-2259. https://doi.org/10.1056/nejmoa0912614

AGOSTINO N. M., CHINCHILLI V. M., LYNCH C. J., KOSZYK-SZEWCZYK A., GINGRICH R., SIVIK J., and DRABICK J. J. Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. Journal of Oncology Pharmacy Practice, 2011, 17(3): 197-202. https://doi.org/10.1177/1078155210378913

JIAN C., FU J., CHENG X., SHEN L. J., JI Y. X., WANG X., PAN S., TIAN H., TIAN S., LIAO R., SONG K., WANG H. P., ZHANG X., WANG Y., HUANG Z., SHE Z. G., ZHANG X. J., ZHU L., and LI H. Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. Cell Metabolism, 2020, 31(5): 892-908. https://doi.org/10.1016/j.cmet.2020.04.011


Refbacks

  • There are currently no refbacks.