Automatic Filler Dispersion Quantification in Microstructure Images of Bottom Ash Reinforced Polymer Composite
Abstract
Distribution or dispersion analysis of polymer composite particle fillers is crucial to determine the material's properties and strengths. Bottom ash was used as reinforcement particles in the polymer composite. Bottom ash particles have an irregular shape, porous structure, and rough texture surface. The characteristics cause difficulty in detecting and analyzing the particles in the microstructure image of the polymer composite. This study aimed to build a robust method to detect bottom ash particles in the polymer composite automatically through microstructure image observation. The proposed method can also identify the agglomerated bottom ash particles, separate them, and analyze the distribution. Firstly, an image enhancement technique is applied to eliminate noise in the input image. A multi-level fuzzy segmentation method is implemented to obtain the filler particles region. Each particle region obtained is examined whether it is a touching particle and split it using an edge detection-based method. Before implementing the edge detection, the void filler algorithm is applied. We used a Prewitt edge detector that combines filling gaps between two broken segments using a round mask. The logic difference operation between the whole area and the resulting edge area is implemented to separate the touching particle region. At finally, the quantification of filler dispersion is carried out. To investigate the performance of the splitting method, we compared it with the watershed method. In experiments, this touching particle splitting method can separate agglomeration particles with more than 90% accuracy. This study has two-fold novelties. Firstly, this pioneering study automatically identifies and quantifies filler particles with irregular shapes using image processing techniques. Second, the proposed splitting method has better performance than the watershed method used in previous studies.
Keywords: image processing, dispersion analysis, bottom ash particles, agglomeration particle, microstructure image.
Full Text:
PDFReferences
NGO T.-D. Introduction to Composite Materials. In: NGO T.-D. (ed.) Composite and Nanocomposite Materials: From Knowledge to Industrial Applications. IntechOpen, 2020: 1–27. https://doi.org/10.5772/intechopen.91285
ANANE-FENIN K., AKINLABI E.T., and PERRY N. Quantification of nanoparticle dispersion within polymer matrix using gap statistics. Materials Research Express, 2019, 6: 075310. https://doi.org/10.1088/2053-1591/ab1106
KARASINSKI E. D. N., SASSE F. D., and COELHO L. A. F. Multifractal analysis of particle dispersion and interphase percolation in nanocomposites. Materials Research, 2018, 21(5): e20180265. https://doi.org/10.1590/1980-5373-mr-2018-0265
SANTOS R. M., MOULD S. T., FORMÁNEK P., PAIVA M. C., and COVAS J. A. Effects of particle size and surface chemistry on the dispersion of graphite nanoplates in polypropylene composites. Polymers, 2018, 10(2): 222. https://doi.org/10.3390/polym10020222
ZACCARDI F., SANTONICOLA M. G., and LAURENZI S. Quantitative assessment of nanofiller dispersion based on grayscale image analysis: A case study on epoxy/carbon nanocomposites. Composites Part A: Applied Science and Manufacturing, 2018, 115: 302–310. https://doi.org/10.1016/j.compositesa.2018.10.003
WANG G., YU D., KELKAR A. D., and ZHANG L. Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Progress in Polymer Science, 2017, 75: 73–107. https://doi.org/10.1016/j.progpolymsci.2017.08.002
MARTINEZ R. F., ITURRONDOBEITIA M., IBARRETXE J., and GURAYA T. Methodology to classify the shape of reinforcement fillers: optimization, evaluation, comparison, and selection of models. Journal of Materials Science, 2017, 52: 569–580. https://doi.org/10.1007/s10853-016-0354-1
LI Z., GAO Y., MOON K.-S., YAO Y., TANNENBAUM A., and WONG C. P. Automatic quantification of filler dispersion in polymer composites. Polymer, 2012, 53: 1571–1580. https://doi.org/10.1016/j.polymer.2012.01.048
RAMZI N. I. R., SHAHIDAN S., MAAROF M. Z., and ALI N. Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant. IOP Conference Series: Materials Science and Engineering, 2016, 160: 012056. https://doi.org/10.1088/1757-899X/160/1/012056
KASTIAWAN I. M., SUTANTRA I. N., and SUTIKNO. Correlation of Holding Time and Bottom Ash Particle Size to Mechanical Properties of Polypropylene Composite. Key Engineering Materials, 2020, 867: 172–181. https://doi.org/10.4028/www.scientific.net/kem.867.172
KASTIAWAN I. M., SUTANTRA I. N., and SUTIKNO S. Effect of Bottom Ash Treatment and Process Variables on the Strength of Polypropylene Composites. International Review of Mechanical Engineering, 2020, 14: 324. https://doi.org/10.15866/ireme.v14i5.18804
ESCHWEILER D., SPINA T. V., CHOUDHURY R. C., MEYEROWITZ E., CUNHA A., and STEGMAIER J. CNN-Based Preprocessing to Optimize Watershed-Based Cell Segmentation in 3D Confocal Microscopy Images. Proceedings of the IEEE 16th International Symposium on Biomedical Imaging, Venice, 2019, pp. 223–227. https://doi.org/10.1109/isbi.2019.8759242
ARIS T. A., NASIR A. S. A., and MUSTAFA W. A. Analysis of distance transforms for watershed segmentation on chronic leukaemia images. Journal of Telecommunication, Electronic and Computer Engineering, 2018, 10: 51–56. https://journal.utem.edu.my/index.php/jtec/article/view/4074
ZHANG Y., & XU D. Improved watershed algorithm for cell image segmentation. Advanced Materials Research, 2012, 546–547: 464–468. https://doi.org/10.4028/www.scientific.net/AMR.546-547.464
KORNILOV A. S., & SAFONOV I. V. An overview of watershed algorithm implementations in open source libraries. Journal of Imaging, 2018, 4(10): 123. https://doi.org/10.3390/jimaging4100123
JI X. Q., LI Y., CHENG J. Z., YU Y., and WANG M. Cell image segmentation based on an improved watershed algorithm. Proceedings of the 8th International Congress on Image and Signal Processing, Shenyang, 2015, pp. 433–437. https://doi.org/10.1109/CISP.2015.7407919
KOWAL M., ŻEJMO M., SKOBEL M., KORBICZ J., and MONCZAK R. Cell Nuclei Segmentation in Cytological Images Using Convolutional Neural Network and Seeded Watershed Algorithm. Journal of Digital Imaging, 2020, 33: 231–242. https://doi.org/10.1007/s10278-019-00200-8
HERMAWATI F. A., KASTIAWAN I. M., and MUHYIN. Digital Microscopy Image Enhancement Technique for Microstructure Image Analysis of Bottom Ash Particle Polymer Composites. In: PARINOV I., CHANG S. H., and LONG B. (eds.) Advanced Materials. Springer Proceedings in Materials, Vol. 6. Springer, Cham, 2020: 235–244. https://doi.org/10.1007/978-3-030-45120-2_20
SARKAR S., PAUL S., BURMAN R., DAS S., and CHAUDHURI S. S. A Fuzzy Entropy Based Multi-Level Image Thresholding Using Differential Evolution. In: PANIGRAHI B., SUGANTHAN P., and DAS S. (eds.) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2014. Lecture Notes in Computer Science, Vol. 8947. Springer, Cham, 2015: 386–395. https://doi.org/10.1007/978-3-319-20294-5_34
NAIDU M. S. R., KUMAR P. R., and CHIRANJEEVI K. Shannon and Fuzzy entropy based evolutionary image thresholding for image segmentation. Alexandria Engineering Journal, 2018, 57: 1643–1655. https://doi.org/10.1016/j.aej.2017.05.024
HERMAWATI F. A., TJANDRASA H., SUGIONO, SARI G. I. P., and AZIS A. Automatic femur length measurement for fetal ultrasound image using localizing region-based active contour method. Journal of Physics: Conference Series, 2019, 1230: 012002. https://doi.org/10.1088/1742-6596/1230/1/012002
SOMAWIRATAA I. K., WIDODOA K. A., ACHMADIA S., and UTAMININGRUM F. Road Detection Based on Statistical Analysis. Journal of Hunan University Natural Sciences, 2020, 47(12): 57–64. http://jonuns.com/index.php/journal/article/view/487
HERMAWATI F. A., TJANDRASA H., and SUCIATI N. Hybrid Speckle Noise Reduction Method for Abdominal Circumference Segmentation of Fetal Ultrasound Images. International Journal of Electrical and Computer Engineering, 2018, 8: 1747–1757. http://doi.org/10.11591/ijece.v8i3.pp1747-1757
UMAIR M., HASHMANI M. A., and KEIICHI H. Rough-Sea-Horizon-Line Detection using a Novel Color Clustering and Least Squares Regression Method. Journal of Hunan University Natural Sciences, 2020, 47(12): 133–145. http://jonuns.com/index.php/journal/article/view/491
UDUPA J. K., LEBLANC V. R., ZHUGE Y., IMIELINSKA C., SCHMIDT H., CURRIE L. M., HIRSCH B. E., and WOODBURN J. A Framework for Evaluating Image Segmentation Algorithms. Computerized Medical Imaging and Graphics, 2006, 30: 75–87. https://doi.org/10.1016/j.compmedimag.2005.12.001
Refbacks
- There are currently no refbacks.