Evaluation of Antioxidant and Anti-Inflammatory Activities of Seed Extract of Heritiera littoralis

Indra Lasmana Tarigan, Sonia, Emi Lestari, Yusnaidar, Mahya Ihsan, Madyawati Latief

Abstract

Plant bioactive compounds are typically distributed across leaves, stems, and fruits. The Dungun plant (Heritiera littoralis), a mangrove species, is a promising source of bioactive compounds. However, research on the bioactive properties of H. littoralis seeds remains limited and warrants further investigation. This study aimed to isolate and characterize the bioactive compounds from H. littoralis seed extracts for their antioxidant and anti-inflammatory potential, with the aim of developing functional food applications. The research methodology involved the extraction and fractionation of H. littoralis seeds, antioxidant analysis using the DPPH assay, in vivo evaluation of anti-inflammatory activity using a rat paw edema model, and in silico molecular docking studies. Ethanol extraction yielded secondary metabolites including flavonoids, tannins, saponins, and steroids. Fractionation using Vacuum Liquid Chromatography (VLC) produced three main fractions. Fraction F2 was further purified by Gravity Column Chromatography (GCC), resulting in a pure isolate (F2.3).
The melting point of the isolate (175–177°C) was consistent with that of catechins, suggesting its high purity. Characterization of the isolate using UV-Vis spectrophotometry revealed two absorption peaks at 218 nm and 280 nm, indicative of hydroxyl groups and electron transitions from the carbonyl groups. FTIR analysis supported this identification, with absorption bands at 3346.55 cm⁻¹ (-OH group), 2925.67 cm⁻¹ (C-H alkane), and 1521.35 cm⁻¹ (C=C aromatic), confirming the isolate’s similarity to catechin. The anti-inflammatory activity was assessed using a rat paw edema model. The results showed that the highest inhibition percentage was achieved with Na diclofenac (80.21%), followed by a 15 mg/kg body weight (BW) extract (62.63%), and a 10 mg/kg BW isolate (53.13%). Antioxidant activity testing via the DPPH method revealed that the ethanol fraction exhibited significant activity, with an IC₅₀ value of 26.51 ppm, compared to ascorbic acid (positive control) with an IC₅₀ of 5.68 ppm. These findings demonstrate that H. littoralis seeds have substantial potential as sources of effective antioxidant and anti-inflammatory agents, highlighting their potential for future development in functional foods and therapeutic applications.

 

Keywords: Antioxidant, Anti-Inflammatory, Bioactive Compouds, Heritoria littoralis.

 

https://doi.org/10.55463/issn.1674-2974.52.3.1


Full Text:

PDF


References


Snezhkina A V., Kudryavtseva A V., Kardymon OL, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2020;2019. doi:10.1155/2019/6175804

Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: A review. Eur J Med Chem. 2019;178:687-704. doi:10.1016/j.ejmech.2019.06.010

Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11(10):4955-4984. doi:10.1007/s12274-018-2092-y

Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko S V. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res. 2018;52(5):507-543. doi:10.1080/10715762.2018.1457217

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363-383. doi:10.1038/s41580-020-0230-3

Coughey GH. Mast cell proteases as pharmacological targets. Eur J Pharmacol. 2016;778(3):44-55. doi:10.1016/j.ejphar.2015.04.045.Mast

Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem. 2014;395(2):203-230. doi:10.1515/hsz-2013-0241

Kozlov EM, Ivanova E, Grechko A V., Wu WK, Starodubova A V., Orekhov AN. Involvement of Oxidative Stress and the Innate Immune System in SARS-CoV-2 Infection. Diseases. 2021;9(1):17. doi:10.3390/diseases9010017

Ajith Y, Dimri U, Dixit SK, et al. Immunomodulatory basis of antioxidant therapy and its future prospects: an appraisal. Inflammopharmacology. 2017;25(5):487-498. doi:10.1007/s10787-017-0393-5

Sharifi-Rad M, Anil Kumar N V., Zucca P, et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol. 2020;11(July):1-21. doi:10.3389/fphys.2020.00694

Sohail R, Mathew M, Patel KK, et al. Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus. 2023;15(4):1-14. doi:10.7759/cureus.37080

Borer JS, Simon LS. Cardiovascular and gastrointestinal effects of COX-2 inhibitors and NSAIDs: Achieving a balance. Arthritis Res Ther. 2005;7(SUPPL. 4):14-22. doi:10.1186/ar1794

Latief M, Lizawati, Tarigan IL, Muhaimin, Sari PM. Screening of antibiotic candidates from nine medicinal plants Jambi Province. In: AIP Conference Proceedings. Vol 080004. ; 2023.

Binuni R, Maarisit W, Hariyadi H, Saroinsong Y. Uji Aktivitas Antioksidan Ekstrak Daun Mangrove Sonneratia alba Dari Kecamatan Tagulandang, Sulawesi Utara Menggunakan Metode DPPH. Biofarmasetikal Trop. 2020;3(1):79-85. doi:10.55724/j.biofar.trop.v3i1.260

Pangestuti R, Siahaan EA, Untari F, Chun BS. Biological activities of Indonesian mangroves obtained by subcritical water extraction. IOP Conf Ser Earth Environ Sci. 2020;441(1). doi:10.1088/1755-1315/441/1/012101

Tarigan IL, Kharisma T, Bemis R, Sutrisno, Latief M. Encapsulation of Ethanol Extract of Jeruju (Acanthus ilicifolius L) Leaves and It’s Antiinflammatory Activities Against Carrageenan-Induced Mice. Molekul. 2023;18(3):468-478.

Febriani AK, Ismiyarto I, Anam K. Total Phenolic and Coumarin Content, Antioxidant Activity of Leaves, Fruits, and Stem Barks of Grey Mangrove (Avicennia marina). J Kim Sains dan Apl. 2020;23(2):34-38. doi:10.14710/jksa.23.2.34-38

Hardiningtyas SD, Purwaningsih S, Handharyani E. Aktivitas Antioksidan Dan Efek Hepatoprotektif Daun Bakau Api-Api Putih. J Pengolah Has Perikan Indones. 2014;17(1):80-91. doi:10.17844/jphpi.v17i1.8140

Lin G, Li M, Xu N, et al. Anti-Inflammatory Effects of Heritiera littoralis Fruits on Dextran Sulfate Sodium- (DSS-) Induced Ulcerative Colitis in Mice by Regulating Gut Microbiota and Suppressing NF- κ B Pathway. Biomed Res Int. 2020;2020. doi:10.1155/2020/8893621

Jhariya B, Pawar M. Ethnomedicinal knowledge of Baiga and Gond Tribe and plant diversity in Jagmandal Forest, Mandla, India, with phytosociological diversity and utilization strategies. Asian J Ethnobiol. 2024;7(1):13-21. doi:10.13057/asianjethnobiol/y070102

Ge L, Li Y, Yang K, Pan Z. Chemical Constituents of the Leaves of Heritiera littoralis. Chem Nat Compd. 2016;52(4):702-703. doi:10.1007/s10600-016-1747-8

Liang X, Niu P, Li J, Guan X, Zhang Y, Li J. Discovery of Anti-Inflammatory Triterpenoid Glucosides from the Heritiera littoralis Dryand. Molecules. 2023;28(4). doi:10.3390/molecules28041658

Alolga RN, Wang F, Zhang X, Li J, Tran LSP, Yin X. Bioactive Compounds from the Zingiberaceae Family with Known Antioxidant Activities for Possible Therapeutic Uses. Antioxidants. 2022;11(7). doi:10.3390/antiox11071281

Mbhele N, Ncube B, Ndhlala AR, Moteetee A. Pro-inflammatory enzyme inhibition and antioxidant activity of six scientifically unexplored indigenous plants traditionally used in South Africa to treat wounds. South African J Bot. 2022;147:119-129. doi:10.1016/j.sajb.2021.12.026

Mahmud I, Islam MK, Saha S, et al. Pharmacological and Ethnomedicinal Overview of Heritiera fomes : Future Prospects . Int Sch Res Not. 2014;2014:1-12. doi:10.1155/2014/938543

Tan C, Wang Z, Feng X, Irfan M, Changjiang L. Identification of bioactive compounds in leaves and fruits of Actinidia arguta accessions from northeastern China and assessment of their antioxidant activity with a radical-scavenging effect. Biotechnol Biotechnol Equip. 2021;35(1):593-607. doi:10.1080/13102818.2021.1908166

Martínez-Mendoza BI, Juárez-Trujillo N, Mendoza-López MR, Monribot-Villanueva JL, Guerrero-Analco JA, Jiménez Fernández M. Bioactive compounds, antioxidant and antibacterial properties of the pulp, peel and aril of the fruit of Clusia quadrangula (Clusiaceae). Acta Bot Mex. 2023;(130). doi:10.21829/abm130.2023.2180

El-Shahir AA, El-Wakil DA, Latef AAHA, Youssef NH. Bioactive Compounds and Antifungal Activity of Leaves and Fruits Methanolic Extracts of Ziziphus spina-christi L. Plants. 2022;11(6):1-18. doi:10.3390/plants11060746

Heriyanti, Putri YE, Irawan H, et al. Encapsulation of Ethanol Extract Perepat Leaves ( Sonneratia alba ) with Maltodextrin Coating as an Antioxidant Functional Food Candidate. Indones Food Technol J. 2024;7(2):193-201.

Khandelwal K, Khandelwal J, Gokhle S, Kokate C, Pawar A. Practical Pharmacognosy Techniques and Experiments. Nirali Prakashan; 2008.

Latief M, Rahmani, Fahrezi A, Sutrisno, Tarigan IL. Comparison of the Anti-Inflammatory Activity of Flavonoid Bioactive Compounds Acetone Fraction and Steroid Fraction Ethyl Acetate Sungkai Leaves In Vivo and In Silico Studies. Pharmacogn J. 2023;15(6):1068-1076. doi:10.5530/pj.2023.15.196

Latief M, Sutrisno, Dasrinal E, Safitri W, Tarigan IL. Immunomodulator Activity of 5,7-dihydroxy isoflavones and β-Sitosterol from Peronema canescens Jack Leaves Methanol and Ethyl Acetate Extract. In: Proceedings of the 4th Green Development International Conference (GDIC 2022). Atlantis Press SARL; 2023:558-572. doi:10.2991/978-2-38476-110-4_57

Jahanbakhsh A, Hosseini M, Jahanshahi M, Amiri A. Extraction of Catechin as a Flavonoid Compound via Molecularly Imprinted Polymers. Int J Eng Trans B Appl. 2022;35(5):988-995. doi:10.5829/IJE.2022.35.05B.14

Ruiz-Aquino F, Santiago-García W, Suárez-Mota ME, Esquivel-Reyes HH, Feria-Reyes R, Rutiaga-Quiñones JG. Development and validation of an analytical method for condensed tannin extracts obtained from the bark of four tree species using HPLC. Wood Res. 2021;66(2):171-182. doi:10.37763/wr.1336-4561/66.2.171182

Hossain M, Panthi S, Asadujjaman M, Khan S, Sadhu S, Ferdous F. Phytochemical and Pharmacological Assessment of the Ethanol Leaves Extract of Heritiera fomes Buch. Ham. (Family-Sterculiaceae). J Pharmacogn Phytochem. 2013;2(3):95-101.

Mahmud I, Islam MK, Saha S, et al. Pharmacological and Ethnomedicinal Overview of Heritiera fomes : Future Prospects . Int Sch Res Not. 2014;2014:1-12. doi:10.1155/2014/938543

Fereidoni M, Ahmadiani A, Semnanian S, Javan M. An accurate and simple method for measurement of paw edema. J Pharmacol Toxicol Methods. 2000;43(1):11-14. doi:10.1016/S1056-8719(00)00089-7

Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq-Yap YH, Hezmee MNM. The crucial roles of inflammatory mediators in inflammation: A review. Vet World. 2018;11(5):627-635. doi:10.14202/vetworld.2018.627-635

Marcińczyk N, Gromotowicz-Popławska A, Tomczyk M, Chabielska E. Tannins as Hemostasis Modulators. Front Pharmacol. 2022;12(January):1-21. doi:10.3389/fphar.2021.806891

Jing W, Xiaolan C, Yu C, Feng Q, Haifeng Y. Pharmacological effects and mechanisms of tannic acid. Biomed Pharmacother. 2022;154(August):113561. doi:10.1016/j.biopha.2022.113561

Altman R, Bosch B, Brune K, Patrignani P, Young C. Advances in NSAID development: Evolution of diclofenac products using pharmaceutical technology. Drugs. 2015;75(8):859-877. doi:10.1007/s40265-015-0392-z

Rubio-Ruiz ME, Pérez-Torres I, Diaz-Diaz E, Pavón N, Guarner-Lans V. Non-steroidal anti-inflammatory drugs attenuate the vascular responses in aging metabolic syndrome rats. Acta Pharmacol Sin. 2014;35(11):1364-1374. doi:10.1038/aps.2014.67


Refbacks

  • There are currently no refbacks.