Genetic Influences on Reproductive Traits in Goats of Malaysia: A Review

Armiyas Shibesh Faris, Candyrine Su Chui Len, Mohammad Mijanur Rahman, Mohamad Zaihan Bin Zailan, Juplikely James Silip, Subir Sarker, Md. Safiul Alam Bhuiyan

Abstract

This review investigates the genetic influences on key reproductive traits in Malaysian goats, which are crucial for improving meat production and economic value. Traits such as litter size, kidding interval, age at first service, and gestation length show varying heritability, indicating limited potential for selection improvement in some cases. Significant major genetic markers, including DNAH1, GDF9, BMP15, and BMPR1B, have been linked to reproductive performance, particularly litter size and fertility. The high levels of inbreeding observed in Malaysian goats could negatively impact these reproductive traits, further complicating traditional selection methods. Seasonal breeding patterns and environmental factors, such as melatonin secretion, significantly impact reproductive outcomes, highlighting the importance of effective herd management. Variability in reproductive traits among breeds like Shaanbei white cashmere goats, Chinese native breeds, and Alpine versus Saanen bucks is noted, with generally low heritability estimates for traits like litter size and age at first kidding. Advanced reproductive technologies, including marker-assisted selection, multiple ovulations, and genomic selection, offer the potential for accelerating genetic gain, particularly in addressing the challenges posed by inbreeding. Integrating genetic and environmental factors into breeding programs can enhance reproductive efficiency and overall productivity. This study provides a framework for targeted breeding strategies to improve the reproductive performance of goats in Malaysia.

 

Keywords: Genetic marker, goat, heritability, litter size, reproductive trait.

 

https://doi.org/10.55463/issn.1674-2974.52.2.6


Full Text:

PDF


References


AMILLS M., CAPOTE J., and TOSSER‐KLOPP G. Goat domestication and breeding: a jigsaw of historical, biological and molecular data with missing pieces. Animal Genetics, 2017, 48(6): 631–644. https://doi.org/10.1111/age.12598

GIANNICO F., MASSARI S., CAPUTI JAMBRENGHI A., SORIANO A., PALA A., LINGUITI G., CICCARESE S., & ANTONACCI R. The expansion of the TRB and TRG genes in domestic goats (Capra hircus) is characteristic of the ruminant species. BMC Genomics, 2020, 21(1): 623, https://doi.org/10.1186/s12864-020-07022-x

TIWARI G., CHAUHAN A., SHARMA P., and TIWARI R. Nutritional Values and Therapeutic Uses of Capra hircus Milk. International Journal of Pharmaceutical Investigation 2022, 12(4): 408–417, https://doi.org/10.5530/ijpi.2022.4.71

FAO. FAOSTAT: Food and Agriculture Data. FOOD Agric. Organ, 2018. http://www.fao.org/faostat/en/#data/QA

MAZINANI M., and RUDE B. Population, World Production and Quality of Sheep and Goat Products. American Journal of Animal and Veterinary Sciences, 2020, 15(4): 291–299, https://doi.org/10.3844/ajavsp.2020.291.299

ZUBIR M. A., BONG C. P. C., ISHAK S. A., HO W. S., and HASHIM H. The trends and projections of greenhouse gas emission by the livestock sector in Malaysia. Clean Technologies and Environmental Policy, 2022, 24(1): 363–377, https://doi.org/10.1007/s10098-021-02156-2

SAHOO S., ALEX R., VOHRA V., MUKHERJEE S., and GOWANE G. R. Estimation of genetic parameters and genetic change of first parity reproductive traits in Alpine × Beetal goats. Reproduction in Domestic Animals, 2023, 58(9): 1188–1198, https://doi.org/10.1111/rda.14418.

FANG X., YANG S., CHEN M., SUN R., ZHAO L., GU B., ZHANG J., HUANG D., ZHENG T., ZHAO Y., PENG P., & ZHAO Y. Association analysis of polymorphisms at GLRB, GRIA2, and GASK1B genes with reproductive traits in Dazu Black Goats. Animal Biotechnology, 2023, 34(9): 4721–4729. https://doi.org/10.1080/10495398.2023.2187406

MOHAMMED MUAYAD TA, HANIZA M.Z.H., & HUSNI I. Reproductive performance of different goat breeds in Malaysia. Indian Journal of Animal Research, 2017, 53(1): 24-27. https://doi.org/10.18805/ijar.v0iOF.7002

GRIZELJ J., PELLICER-RUBIO M., ŠPOLJARIĆ B., DÁVILA F., and FRERET S. Nonhormonal Reproductive Management in Goat Breeding. Corpus Journal of Dairy and Veterinary Science, 2022, 3(4): 1048, https://doi.org/10.54026/CJDVS/1048

BHATTARAI, N., POUDEL, J., KOLAKSHYAPATI, M. R., SHARMA, M. P., GORKHALI, N. A., SIGDEL, A., … & SAPKOTA, S. Evaluation of reproductive performance and litter traits of Khari, Jamunapari and Sirohi crossbred goats in Surkhet district of Karnali province, Nepal. Journal of Agriculture and Forestry University, 2022, 5(1): 71–80, https://doi.org/10.3126/jafu.v5i1.48444

ATOUI A., CARABAÑO M. J., ABDENNEBI M., & NAJARI S. Modélisation des performances de reproduction de la population caprine locale dans les régions arides tunisiennes. Journal of Oasis Agriculture and Sustainable Development 2022, 4(3): 29–37, https://doi.org/10.56027/JOASD.132022

FANG X., GU B., CHEN M, SUN R., ZHANG J., ZHAO L., & ZHAO Y. Genome-Wide Association Study of the Reproductive Traits of the Dazu Black Goat (Capra hircus) Using Whole-Genome Resequencing. Genes, 2023, 14(10): 1960, https://doi.org/10.3390/genes14101960

MELLADO M. Goat Management: Reproductive Management. In Encyclopedia of Dairy Sciences, Elsevier, 2022: 905–912. https://doi.org/10.1016/B978-0-08-100596-5.00823-4

NAVASARDYAN D. S., GRIGORYAN A. G., MARMARYAN YU. G., & BADALYAN M. V. The influence of selection factors on the fertility of female goats and the live weight of newborn goats of the Saanen breed. AgriScience and Technology, 2023, 1(81), 75–80, https://doi.org/10.52276/25792822-2023.1-75

WANG Z., WANG R., PAN C., CHEN H., QU L., WU L., GUO Z., ZHU H., & LAN X. Genetic Variations and mRNA Expression of Goat DNAH1 and their Associations with Litter Size. Cells, 2022, 11(8): 1371, https://doi.org/10.3390/cells11081371

SUN X., JIANG J., WANG G., ZHOU P., LI J., CHEN C., LIU L., LI N., XIA Y., & REN H. Genome-wide association analysis of nine reproduction and morphological traits in three goat breeds from Southern China. Animal Bioscience, 2023, 36(2): 191–199, https://doi.org/10.5713/ab.21.0577

SUN X., NIU Q., JIANG J., WANG G., ZHOU P., LI J., CHEN C., LIU L., XU L., & REN H. Identifying Candidate Genes for Litter Size and Three Morphological Traits in Youzhou Dark Goats Based on Genome-Wide SNP Markers. Genes, 2023, 14(6): 1183, https://doi.org/10.3390/genes14061183

HAN M., LIANG C., LIU Y., HE X., & CHU M. Integrated Transcriptome Analysis Reveals the Crucial mRNAs and miRNAs Related to Fecundity in the Hypothalamus of Yunshang Black Goats during the Luteal Phase. Animals, 2022, 12(23): 3397, https://doi.org/10.3390/ani12233397

AMOAH E. A., GELAYE S., GUTHRIE P., & REXROAD C. E. Breeding season and aspects of reproduction of female goats. Journal of Animal Science, 1996, 74(4): 723-728, https://doi.org/10.2527/1996.744723x

DESIRE S., MUCHA S., COFFEY M., MRODE R., BROADBENT J., & CONINGTON J. Pseudopregnancy and a seasonal breeding in dairy goats: genetic basis of fertility and impact on lifetime productivity. Animal, 2018, 12(9): 1799–1806, https://doi.org/10.1017/S1751731117003056

MOCÉ E., MOCÉ M. L., LOZANO-PALAZÓN S. A., BERNÁCER J., MARTÍNEZ-GRANELL M. M., ESTEVE I. C., BERNAT F., CONTRERAS S. J., VILLALBA I., & GÓMEZ E. A. Fertility prediction in dairy goats from Murciano-Granadina breed: The role of sperm evaluation and female traits. Animal, 2022, 16(5): 100525, https://doi.org/10.1016/j.animal.2022.100525

MARGATHO G., RODRÍGUEZ-ESTÉVEZ V., QUINTAS H., & SIMÕES J. The Effects of Reproductive Disorders, Parity and Litter Size on Milk Yield of Serrana Goats. Animals, 2019, 9(11): 968, https://doi.org/10.3390/ani9110968

ARREBOLA F. A., TORRES-MARTELL R., GONZÁLEZ-CASQUET O., MEZA-HERRERA C. A., & PÉREZ-MARÍN C. C. Periovulatory Hormonal Profiles after Estrus Induction and Conception Rate by Fixed-Time AI in Payoya Goats during the Anestrous Season. Animals, 2022, 12(20): 2853, https://doi.org/10.3390/ani12202853

ZARAZAGA L., GATICA M.C., & HERNANDEZ H., KELLER M., CHEMINEAU P., DELGADILLO SÁNCHEZ J., & GUZMÁN J. The reproductive response to the male effect of 7- or 10-month-old female goats is improved when photostimulated males are used. Animal, 2019, 13(8): 1658–1665, https://doi.org/10.1017/S1751731118003397

SIMÕES J., ABECIA J. A., CANNAS A., DELGADILLO J. A., LACASTA D., VOIGT K., & CHEMINEAU P. Review: Managing sheep and goats for sustainable high yield production. Animal, 2021, 15(Suppl. 1): 100293, https://doi.org/10.1016/j.animal.2021.100293

DELGADILLO J. A. Environmental and social cues can be used in combination to develop sustainable breeding techniques for goat reproduction in the subtropics. Animal, 2011, 5(1): 74–81, https://doi.org/10.1017/S1751731110001400

ZHU Y., YE J., QIN P., YAN X., GONG X., LI X., LIU Y., ... & FANG F. Analysis of serum reproductive hormones and ovarian genes in pubertal female goats. Journal of Ovarian Research, 2023, 16(1): 69, https://doi.org/10.1186/s13048-023-01150-0

GRANLEESE T., CLARK S. A., KINGHORN B. P., & VAN DER WERF J. H. J. Optimizing female allocation to reproductive technologies considering merit, inbreeding and cost in nucleus breeding programmes with genomic selection. Journal of Animal Breeding and Genetics, 2019, 136(2): 79–90, https://doi.org/10.1111/jbg.12374

SHUMBUSHO F., RAOUL J., ASTRUC J.M., PALHIERE I., and ELSEN J. M. Potential benefits of genomic selection on genetic gain of small ruminant breeding programs. Journal of Animal Science, 2013, 91(8): 3644–3657. https://doi.org/10.2527/jas.2012-6205

LAI F.-N., ZHAI H.-L., CHENG M., MA J.-Y., SHUN-FENG CHENG, WEI GE, GUO-LIANG ZHANG, JUN-JIE WANG, ZHANG R.-Q., … & SHEN W. Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Scientific Reports, 2016, 6(1): 38096, https://doi.org/10.1038/srep38096

ABUZAHRA M., ABU EID L., EFFENDI M. H., MUSTOFA I., LAMID M., and REHMAN S. Polymorphism studies and candidate genes associated with litter size traits in Indonesian goats. a systematic review. F1000Research, 2023, 12: 61, https://doi.org/10.12688/f1000research.129050.1

MAHMOUDI P., RASHIDI A., NAZARI-GHADIKOLAEI A., ROSTAMZADEH J., RAZMKABIR M., & HUSON H. J. Genome-wide association study reveals novel candidate genes for litter size in Markhoz goats. Frontiers in Veterinary Science, 2022, 9: 1045589, https://doi.org/10.3389/fvets.2022.1045589

WANG P., LI W., LIU Z., H X., LAN, R., LIU Y., & CHU M. Analysis of the Association of Two SNPs in the Promoter Regions of the PPP2R5C and SLC39A5 Genes with Litter Size in Yunshang Black Goats. Animals, 2022, 12(20): 2801, https://doi.org/10.3390/ani12202801

XIN D., BAI Y., BI Y., HE L., KANG Y., PAN C., ZHU H., CHEN H., QU L., & LAN X. Insertion/deletion variants within the IGF2BP2 gene identified in reported genome-wide selective sweep analysis reveal a correlation with goat litter size. Journal of Zhejiang University. Science B, 2021, 22(9): 757–766, https://doi.org/10.1631/jzus. B2100079

BI Y., WANG Z., WANG Q., LIU H., GUO Z., PAN C., CHEN H., ZHU H., WU L., & LAN X. Are Copy Number Variations within the FecB Gene Significantly Associated with Morphometric Traits in Goats? Animals, 2022, 12(12): 1547, https://doi.org/10.3390/ani12121547

BI Y., LI J., WANG X., HE L., LAN K., QU L., LAN X., SONG X., & PAN C. Two Novel Rare Strongly Linked Missense SNPs (P27R and A85G) Within the GDF9 Gene Were Significantly Associated with Litter Size in Shaanbei White Cashmere (SBWC) Goats. Frontiers in Veterinary Science, 2020, 7: 406, https://doi.org/10.3389/fvets.2020.00406

JI X., CAO Z., HAO Q., HE M., CANG M., YU H., MA Q., LI X., BAO S., WANG J., & TONG B. Effects of New Mutations in BMPRIB, GDF9, BMP15, LEPR, and B4GALNT2 Genes on Litter Size in Sheep. Veterinary Sciences, 2023, 10(4): 258, https://doi.org/10.3390/vetsci10040258

TAO L., HE X. Y., WANG F. Y., PAN L. X., WANG X. Y., GAN S. Q., DI R., & CHU M. X. Identification of genes associated with litter size combining genomic approaches in Luzhong mutton sheep. Animal Genetics, 2021, 52(4): 545–549, https://doi.org/10.1111/age.13078

DIGE M. S., ROUT K., SINGH M. K., BHUSAN S., KAUSHIK R., and GOWANE G. R. Estimates of genetic parameters for linear body measurements and prediction of body weight in goat. Journal of Animal Breeding and Genetics, 2022, 139(4): 423–433, https://doi.org/10.1111/jbg.12677

GUNIA M., PHOCAS F., ARQUET R., ALEXANDRE G., and MANDONNET N. Genetic parameters for body weight, reproduction, and parasite resistance traits in the Creole goat. Journal of Animal Science, 2011, 89(11): 3443–3451, https://doi.org/10.2527/jas.2011-3872

J. MIRANDA C., LEÓN J. M., PIERAMATI C., GÓMEZ M. M., VALDÉS J., and BARBA C. Estimation of Genetic Parameters for Peak Yield, Yield and Persistency Traits in Murciano-Granadina Goats Using Multi-Traits Models. Animals, 2019, 9(7): 411, https://doi.org/10.3390/ani9070411

ROY R., MANDAL A., and NOTTER D. R. Estimates of (co)variance components due to direct and maternal effects for body weights in Jamunapari goats. Animal, 2008, 2(3): 354–359, https://doi.org/10.1017/S1751731107001218

SHAAT I., and MÄKI‐TANILA A. Variation in direct and maternal genetic effects for meat production traits in Egyptian Zaraibi goats. Journal of Animal Breeding and Genetics, 2009, 126(3): 198–208, https://doi.org/10.1111/j.1439-0388.2008.00784.x.

MOAEEN-UD-DIN M., DANISH MUNER R., and KHAN M. S. Genome wide association study identifies novel candidate genes for growth and body conformation traits in goats. Scientific Reports, 2022, 12(1): 9891, https://doi.org/10.1038/s41598-022-14018-y

CARVALHO G. M. C., PAIVA S. R., ARAÚJO A. M., MARIANTE A., and BLACKBURN H. D. Genetic structure of goat breeds from Brazil and the United States: Implications for conservation and breeding programs. Journal of Animal Science, 2015, 93(10): 4629–4636, https://doi.org/10.2527/jas.2015-8974

GAJBHIYE R., FUNG J. N., and MONTGOMERY G. W. Complex genetics of female fertility. NPJ Genomic Medicine, 2018, 3(1): 29, https://doi.org/10.1038/s41525-018-0068-1

WIJESENA H. R., KACHMAN S.D., LENTS C.A., RIETHOVEN J.-J., TRENHAILE-GRANNEMANN M.D., SAFRANSKI T.J., SPANGLER M.L., & CIOBANU D.C. Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. Journal of Animal Science, 2020, 98(10): skaa293, https://doi.org/10.1093/jas/skaa293

MICHAELIS M., SOBCZAK A., KOCZAN D., LANGHAMMER M., REINSCH N., SCHOEN J., & WEITZEL J. M. Selection for female traits of high fertility affects male reproductive performance and alters the testicular transcriptional profile. BMC Genomics, 2017, 18(1): 889. https://doi.org/10.1186/s12864-017-4288-z

TRENHAILE M. D., PETERSEN J. L., KACHMAN S. D., R. K. JOHNSON, and CIOBANU D. C. Long‐term selection for litter size in swine results in shifts in allelic frequency in regions involved in reproductive processes. Animal Genetics, 2016, 47(5): 534–542, https://doi.org/10.1111/age.12448

FLOSSMANN G., WURMSER C., PAUSCH H., TENGHE A., DODENHOFF J., DAHINTEN G., GÖTZ K. U., RUSS I., & FRIES R. A nonsense mutation of bone morphogenetic protein-15 (BMP15) causes both infertility and increased litter size in pigs. BMC Genomics, 2021, 22(1): 38, https://doi.org/10.1186/s12864-020-07343-x

MA X., LI P. H., ZHU M. X., HE L. C., SUI S. P., GAO S., SU G. S., ... & HUANG R. H. Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs. Animal, 2018, 12(12): 2453–2461, https://doi.org/10.1017/S1751731118000332

MCLAREN D. G., and BOVEY M. Genetic Influences on Reproductive Performance. Veterinary Clinics of North America: Food Animal Practice, 1992, 8(3): 435–459, https://doi.org/10.1016/S0749-0720(15)30697-6

SOSA‐MADRID B. S., SANTACREU M. A., BLASCO A., FONTANESI L., PENA R. N., and IBÁÑEZ‐ESCRICHE N. A genomewide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits. Journal of Animal Breeding and Genetics, 2020, 137(2): 123–138, https://doi.org/10.1111/jbg.12451

AMIRI GHANATSAMAN Z., AYATOLAHI MEHRGARDI A., ASADOLLAHPOUR NANAEI H., and ESMAILIZADEH A. Comparative genomic analysis uncovers candidate genes related with milk production and adaptive traits in goat breeds. Scientific Reports, 2023, 13(1): 8722, https://doi.org/10.1038/s41598-023-35973-0.

YUAN Y., ZHANG W., LIU C., HE Y., ZHANG H., XU L., YANG B., ZHAO Y., MA Y., … & GUANXIN E. Genome-Wide Selective Analysis of Boer Goat to Investigate the Dynamic Heredity Evolution under Different Stages. Animals, 2022, 12(11): 1356, https://doi.org/10.3390/ani12111356

SUN Z., LIU Y., HE X., DI R., WANG X., REN C., ZHANG Z., & CHU M. Integrative Proteomics and Transcriptomics Profiles of the Oviduct Reveal the Prolificacy-Related Candidate Biomarkers of Goats (Capra hircus) in Estrous Periods. International Journal of Molecular Sciences, 2022, 23(23): 14888, https://doi.org/10.3390/ijms232314888

LI R., YANG P., DAI X., ASADOLLAHPOUR NANAEI H., FANG W., … & JIANG Y. A near complete genome for goat genetic and genomic research. Genetics, Selection, Evolution, 2021, 53(1): 74, https://doi.org/10.1186/s12711-021-00668-5

LIU Y., QI B., XIE J., WU X., LING Y., CAO X., KONG F., XIN J., JIANG X., WU Q., ... & LI W. Filtered reproductive long non-coding RNAs by genome-wide analyses of goat ovary at different estrus periods’, BMC Genomics, 2018, 19(1): 866, https://doi.org/10.1186/s12864-018-5268-7

YAN X., ZHANG T., LIU L., YU Y., YANG G., HAN Y., GONG G., WANG F., ZHANG L., LIU H., LI W., YAN X., ... and SU R. Accuracy of Genomic Selection for Important Economic Traits of Cashmere and Meat Goats Assessed by Simulation Study. Frontiers in Veterinary Science, 2022, 9: 770539, https://doi.org/10.3389/fvets.2022.770539

GUO J., JIANG R., MAO A., LIU G. E., ZHAN S., LI L., ZHONG T., ... & ZHANG H. Genome-wide association study reveals 14 new SNPs and confirms two structural variants highly associated with the horned/polled phenotype in goats. BMC Genomics, 2021, 22(1): 769, https://doi.org/10.1186/s12864-021-08089-w

TOLONE M., SARDINA M. T., SENCZUK G., CHESSARI G., CRISCIONE A., MOSCARELLI A., RIGGIO S., … & MASTRANGELO S. Genomic Tools for the Characterization of Local Animal Genetic Resources: Application in Mascaruna Goat. Animals, 2022, 12(20): 2840, https://doi.org/10.3390/ani12202840

HUSSEN ALI O, and AL-AZZAWI S.H. Detection of polymorphism in growth differentiation factor 9 gene (GDF9) Exon1 and its association with litter size in local Iraqi goats. Bionatura, 2022, 7(4): 1–5, https://doi.org/10.21931/RB/2022.07.04.49

ZERGANI E., RASHIDI A., ROSTAMZADEH J., RAZMKABIR M., and TETENS J. Meta-analysis of association between c.963A > G single-nucleotide polymorphism on BMP15 gene and litter size in goats. Archives Animal Breeding, 2022, 65(3): 309–318, https://doi.org/10.5194/aab-65-309-2022

FEBRIANA A., SUTOPO S., KURNIANTO E., and WIDIYANTO W. A Novel SNPs of KISS1 Gene Strongly Associated with Litter Size in Indonesian Goat Breeds. Tropical Animal Science Journal, 2022, 45(3): 255–269, https://doi.org/10.5398/tasj.2022.45.3.255

ZHANG S., GAO X., JIANG Y., SHEN Y., XIE H., PAN P., HUANG Y., WEI Y., & JIANG Q. Population validation of reproductive gene mutation loci and association with the litter size in Nubian goat. Archives Animal Breeding, 2021, 64(2): 375–386, https://doi.org/10.5194/aab-64-375-2021

ERNIE MUNEERAH M. A., MD TAMRIN N. A., SALISI M. S., ZULKIFLY S., GHAZALI S. S. M., … & MAMAT-HAMIDI K. Microsatellite-Based Genetic Characterization of the Indigenous Katjang Goat in Peninsular Malaysia. Animals, 2021, 11(5): 1328, https://doi.org/10.3390/ani11051328

NORHAZIRAH A.H., NULIT R., SHOHAIMI S. and SHIKH MAIDIN M. Assessment of reproductive performance and abortion occurrence of Boer goats as influenced by farm systems and feeding practices. Malaysian Journal of Animal Science, 2016, 19(2): 107–115. https://mjas.my/mjas-v2/rf/pages/journal/v19i2-11-Nurhazirah%20Mashitah(Assessment)_r4.pdf

BAKAR A., and MARINI A. Genetic characterisations of four goat breeds in Malaysia assessed using microsatellites. Master’s thesis, Universiti Putra Malaysia, Malaysia, 2014. http://psasir.upm.edu.my/id/eprint/52528

AMIE MARINI A.B., MOHD HIFZAN R., JOHARI J. A., TAN S. G., and PANANDAM J. M. Genetic Variation of Four Goat Breeds in Malaysia Using Microsatellite Polymorphism Markers. Malaysian Journal of Animal Science, 2013, 16(2): 1–8. https://msap.my/mjas16-2/1(GENETIC-Amieza_1-8)rev3.pdf

AMIE MARINI A.B., MOHD HIFZAN R., JOHARI J. A., TAN S. G., and PANANDAM J. M. Assessment of Genetic Diversity on Goat Breeds in Malaysia Using Microsatellite Markers. Malays. Journal of Animal Science, 2014, 17(1): 19–26. https://www.msap.my/pdf/2-Assesment-Amie_rev6.pdf

CORTE PAUSE F., CROCIATI M., URLI S., MONACI M., DEGANO L., and STRADAIOLI G. Environmental Factors Affecting the Reproductive Efficiency of Italian Simmental Young Bulls. Animals, 2022, 12(18): 2476, https://doi.org/10.3390/ani12182476

CREAN A. J., and IMMLER S. Evolutionary consequences of environmental effects on gamete performance. Philosophical Transactions of the. Royal Society B: Biological Sciences, 2021, 376(1826): 20200122, https://doi.org/10.1098/rstb.2020.0122

FURSTOSS V., DAVID I., FATET A., BOISSARD K., CLÉMENT V., and BODIN L. Genetic and non-genetic factors related to the success of artificial insemination in dairy goats. Animal, 2015, 9(12): 1935–1942, https://doi.org/10.1017/S1751731115001500

MUCHA S., TORTEREAU F., DOESCHL-WILSON A., RUPP R., and CONINGTON J. Animal Board Invited Review: Meta-analysis of genetic parameters for resilience and efficiency traits in goats and sheep. Animal, 2022, 16(3): 100456, https://doi.org/10.1016/j.animal.2022.100456

EVANS T. J. Diminished Reproductive Performance and Selected Toxicants in Forages and Grains. Veterinary Clinics of North America: Food Animal Practice, 2011, 27(2): 345–371, https://doi.org/10.1016/j.cvfa.2011.03.001

RHIND S., RAE M., and BROOKS A. Effects of nutrition and environmental factors on the fetal programming of the reproductive axis. Reproduction, 2001, 122(2): 205–214, https://doi.org/10.1530/rep.0.1220205

LOZANO-JARAMILLO M., KOMEN H., WIENTJES Y. C. J., MULDER H. A., and BASTIAANSEN J. W. M. Optimizing design to estimate genetic correlations between environments with common environmental effects. Journal of Animal Science, 2020, 98(2): skaa034, https://doi.org/10.1093/jas/skaa034

HAMEL S., CÔTÉ S. D., and FESTA-BIANCHET M. Maternal characteristics and environment affect the costs of reproduction in female mountain goats. Ecology, 2010, 91(7): 2034–2043, https://doi.org/10.1890/09-1311.1

CUMMINGS A. M. and KAVLOCK R. J. Gene–Environment Interactions: A Review of Effects on Reproduction and Development. Critical Reviews in Toxicology, 2004, 34(6): 461–485, https://doi.org/10.1080/10408440490519786

PARK T. S. Gene-editing techniques and their applications in livestock and beyond. Animal Bioscience, 2023, 36(2): 333–338, https://doi.org/10.5713/ab.22.0383

GARCIA A. 50 Gene Editing Applications in Livestock Production. Journal of Animal Science, 2023, 101(Supplement_1): 43–44, https://doi.org/10.1093/jas/skad068.050

POLEJAEVA I. Generation of Genetically Engineered Livestock Using Somatic Cell Nuclear Transfer. Reproduction, 2021, 162(1): F11-F22, https://doi.org/10.1530/REP-21-0072

YÁÑEZ J. M., XU P, CARVALHEIRO R., and HAYES B. Genomics applied to livestock and aquaculture breeding. Evolutionary Applications, 2022, 15(4): 517–522, https://doi.org/10.1111/eva.13378

. BAES C. F, ROCHUS C. M., HOULAHAN K., OLIVEIRA JR G. A., VAN STAAVEREN N., and MIGLIOR F. 22 Sustainable Livestock Breeding: Challenges and Opportunities. Journal of Animal Science, 2022, 100(Supplement_3): 13–13, https://doi.org/10.1093/jas/skac247.023

BISHOP T. F., and VAN EENENNAAM A. L. Genome editing approaches to augment livestock breeding programs. Journal of Experimental Biology, 2020, 223(Suppl_1): jeb207159, https://doi.org/10.1242/jeb.207159

TU C.-F., CHUANG C., and YANG T.-S. The application of new breeding technology based on gene editing in pig industry — A review. Animal Bioscience, 2022, 35(6): 791–803, https://doi.org/10.5713/ab.21.0390

ISLAM R., LIU X., GEBRESELASSIE G., ABIED A., MA Q., and MA Y. Genome-wide association analysis reveals the genetic locus for high reproduction trait in Chinese Arbas Cashmere goat. Genes Genomics, 2020, 42(8): 893–899, https://doi.org/10.1007/s13258-020-00937-5

PROUDFOOT C., MCFARLANE G., WHITELAW B., and LILLICO S. Livestock breeding for the 21st century: the promise of the editing revolution. Frontiers of Agricultural Science and Engineering, 2020, 7(2): 129, https://doi.org/10.15302/J-FASE-2019304

YUAN M., GAO Y., HAN J., WU T., ZHANG J., WEI Y., & ZHANG Y. The development and application of genome editing technology in ruminants: a review. Frontiers of Agricultural Science and Engineering, 2020, 7(2): 171, https://doi.org/10.15302/J-FASE-2019302

ALMEIDA M., and RANISCH R. Beyond safety: mapping the ethical debate on heritable genome editing interventions. Humanities and Social Sciences Communications, 2022, 9(1): 139, https://doi.org/10.1057/s41599-022-01147-y

MATTAR C. N. Z., LABUDE M. K., LEE T. N., and LAI P. S. Ethical considerations of preconception and prenatal gene modification in the embryo and fetus. Human Reproduction, 2021, 36(12): 3018–3027, https://doi.org/10.1093/humrep/deab222

BRANDT R. The ethical gene. Bioethics, 2022, 36(4): 403–410, https://doi.org/10.1111/bioe.13006

XAFIS V., SCHAEFER G. O., LABUDE M. K., ZHU Y., ... & CHADWICK R. Germline genome modification through novel political, ethical, and social lenses. PLOS Genetics, 2021, 17(9): e1009741, https://doi.org/10.1371/journal.pgen.1009741

KRISHAN K., KANCHAN T., and SINGH B. Human Genome Editing and Ethical Considerations. Science and Engineering Ethics, 2016, 22(2): 597–599, https://doi.org/10.1007/s11948-015-9675-8

YEAGER A. Ethical issues raised by intergenerational monitoring in clinical trials of germline gene modification. Journal of Medical Ethics, 2021, 47(4): 267–270, https://doi.org/10.1136/medethics-2020-106095

KORMOS A., LANZARO G. C., BIER E., SANTOS V., NAZARÉ L., PINTO J., AGUIAR DOS SANTOS A., & JAMES A. A. Ethical Considerations for Gene Drive: Challenges of Balancing Inclusion, Power and Perspectives. Frontiers in Bioengineering and Biotechnology, 2022, 10: 826727, https://doi.org/10.3389/fbioe.2022.826727

SUGARMAN J. Ethics and germline gene editing. EMBO Reports, 2015, 16(8): 879–880, https://doi.org/10.15252/embr.201540879

QIU R. Debating Ethical Issues in Genome Editing Technology. Asian Bioethics Review, 2016, 8(4): 307–326, https://doi.org/10.1353/asb.2016.0026

KAUMBATA W., NAKIMBUGWE H., NANDOLO W., BANDA L. J., MÉSZÁROS G., GONDWE T., ... & WURZINGER, M. Experiences from the Implementation of Community-Based Goat Breeding Programs in Malawi and Uganda: A Potential Approach for Conservation and Improvement of Indigenous Small Ruminants in Smallholder Farms. Sustainability, 2021, 13(3): 1494, https://doi.org/10.3390/su13031494

HAILE A., GIZAW S., GETACHEW T., MUELLER J. P., AMER P., REKIK M., & RISCHKOWSKY B. ... & WURZINGER M. Community‐based breeding programmes are a viable solution for Ethiopian small ruminant genetic improvement but require public and private investments. Journal of Animal Breeding and Genetics, 2019, 136(5): 319–328, https://doi.org/10.1111/jbg.12401

SOW F., CAMARA Y., TRAORE E., CABARAUX J.-F., MISSOHOU A., ANTOINE-MOUSSIAUX N., HORNICK J-L., & MOULA N. Characterisation of smallholders’ goat production systems in the Fatick area, Senegalю Pastoralism, 2021, 11(1): 12, https://doi.org/10.1186/s13570-021-00195-4

MONAU P., RAPHAKA K., ZVINOROVA-CHIMBOZA P., and GONDWE T. Sustainable Utilization of Indigenous Goats in Southern Africa. Diversity, 2020, 12(1): 20, https://doi.org/10.3390/d12010020

BRAGA LOBO R. N. Opportunities for investment into small ruminant breeding programmes in Brazil. Journal of Animal Breeding and Genetics, 2019, 136(5): 313–318, https://doi.org/10.1111/jbg.12396

SILVA S. R., SACARRÃO-BIRRENTO L., ALMEIDA M., RIBEIRO D. M., GUEDES C., GONZÁLEZ MONTAÑA J. R., ... & DE ALMEIDA, A. M. Extensive Sheep and Goat Production: The Role of Novel Technologies towards Sustainability and Animal Welfare. Animals, 2022, 12(7): 885, https://doi.org/10.3390/ani12070885

THOMPSON W. M., and MAGNAN N. Predicting Success in a Productive Asset Transfer Program: A Goat Program in Haiti. Applied Economic Perspectives and Policy, 2017, 39(2): 363–385, https://doi.org/10.1093/aepp/ppx021

WANG L., NGULUMA A., LEITE-BROWNING M. L., and BROWNING R. Differences among four meat goat breeds for doe fitness indicator traits in the southeastern United States. Journal of Animal Science, 2017, 95(4): 1481–1488, https://doi.org/10.2527/jas.2016.1283


Refbacks

  • There are currently no refbacks.