The Semi-Intensive Seed Production Method for Marine Fishes
Abstract
Artificial juveniles are crucial for advancing commercial aquaculture in terms of their quality, quantity, and cost. The three key factors for successful aquaculture are egg, feed, and water. Eggs need to be healthy and genetically advanced to exhibit fast growth, superior meat yield, disease resistance, and early maturation. Premium traits were carefully selected and refined through generations (F1 and F2) to stabilize these desirable qualities for commercial applications. Consequently, hatcheries should prioritize the production of premium juveniles to meet growing demands. The aim of this study was to establish a fish seed production method capable of generating premium juveniles at low cost and with ease. The Semi-Intensive Seed Production (SISP) method is tailored for breeders, small investors, and fishermen, who may lack extensive knowledge or access to advanced technology required for intensive microalgae, rotifers, and Artemia cultivation. SISP selects ideal characters by natural selection during the seed production period, and the method can be applied to other species. Furthermore, the method accepted small investments to join aquaculture, which solved one of the bottlenecks of the business, and the method can be applied to other species. The SISP does not require a significant upfront investment or high operational expenses; instead, it requires a sizable tank (20 m3 and 2 m depth), water supply, agricultural fertilizer, an air blower, and artificial feeds. Rather than relying heavily on cultured rotifers and Artemia, SISP leverages wild-bloomed phytoplankton and zooplankton. Research conducted with various fish species in Chile and Cuba from 2010 to 2024 demonstrated that while SISP exhibited a lower survival rate (2%) compared to Intensive Seed Production (ISP) (70%), it offered cost-efficiency and superior quality advantages. Nonetheless, SISP encountered challenges in meeting the demand for mass production culture owing to its dependence on live feeds, which hinge on phytoplankton.
Keywords: Oplegnathus insignis; Seriola lalandi; Engraulis ringens; Graus nigra; Lutjanus analis
https://doi.org/10.55463/issn.1674-2974.51.8.9
Full Text:
PDFReferences
BOYD C. E., MCNEVIN A. A., and DAVIS R. P. The contribution of fisheries and aquaculture to the global protein supply. Food Security, 2022, 14(3): 805–827, https://doi.org/10.1007/s12571-021-01246-9.
KAISER B. A., KOURANTIDOU M., and FERNANDEZ L. A case for the commons: The Snow Crab in the Barents. Journal of Environmental Management, 2018, 210: 338–348, https://doi.org/10.1016/j.jenvman.2018.01.007.
MURRAY G. D., and INGS D. Adaptation in a time of stress: A social-ecological perspective on changing fishing strategies in the Canadian snow crab fishery. Marine Policy, 2015, 60: 280–286, https://doi.org/10.1016/j.marpol.2015.07.014.
HANNESSON R. Fisheries mismanagement: the case of the North Atlantic cod, 1st ed. Oxford, U.K.: Wiley-Blackwell, 1996.
KJESBU O. S., BOGSTAD B., DEVINE J. A., GJØSÆTER H., HOWELL D., INGVALDSEN R. B., NASH R. D. M., & SKJÆRAASEN J. E. Synergies between climate and management for Atlantic cod fisheries at high latitudes. Proceedings of the National Academy of Sciences, 2014, 111(9): 3478–3483, https://doi.org/10.1073/pnas.1316342111.
SALAS S., CHUENPAGDEE R., SEIJO J. C., and CHARLES A. Challenges in the assessment and management of small-scale fisheries in Latin America and the Caribbean. Fisheries Research, 2007, 87(1): 5–16, https://doi.org/10.1016/j.fishres.2007.06.015.
SILVA C., LEIVA F., and LASTRA J. Predicting the current and future suitable habitat distributions of the anchovy (Engraulis ringens) using the Maxent model in the coastal areas off central‐northern Chile. Fisheries Oceanography, 2019, 28(2): 171–182, https://doi.org/10.1111/fog.12400.
PAULY D., WATSON R., and ALDER J. Global trends in world fisheries: impacts on marine ecosystems and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1453): 5–12, https://doi.org/10.1098/rstb.2004.1574.
DIANA J. S. Aquaculture Production and Biodiversity Conservation. BioScience, 2009, 59(1): 27–38, https://doi.org/10.1525/bio.2009.59.1.7.
MAYER I. and PŠENIČKA M. Conservation of teleost fishes: Application of reproductive technologies. Theriogenology Wild, 2024, 4: 100078, https://doi.org/10.1016/j.therwi.2024.100078.
VELA M. A., VILLARREAL H., ARANEDA M., and ESPINOSA-FALLER F. J. Growth and survival of juvenile red drum, Sciaenops ocellatus, acclimated to freshwater at three different stocking densities in a partial recirculation system. Journal of the World Aquaculture Society, 2019, 50(1): 87–103, https://doi.org/10.1111/jwas.12546.
BARDON-ALBARET A. and SAILLANT E. Egg quality traits and predictors of embryo and fry viability in red snapper Lutjanus campechanus. Aquaculture Reports, 2017, 7: 48–56, https://doi.org/10.1016/j.aqrep.2017.05.004.
ESPINOZA RAMOS L. A., CHILLI LAYME V. F., PEPE VICTORIANO R. G., PINO CHOQUEAPAZA J., and CONTRERAS MAMANI Z. Captura, acondicionamiento y primer desove de sargo Anisotremus scapularis en la Región Tacna. Ciencia & Desarrollo, 2019, (25): 68–74, https://doi.org/10.33326/26176033.2019.25.867.
FRASLIN C., QUILLET E., ROCHAT T., DECHAMP N., BERNARDET J-F., COLLET B., LALLIAS D., and BOUDINOT P. Combining Multiple Approaches and Models to Dissect the Genetic Architecture of Resistance to Infections in Fish. Frontiers in Genetics, 2020, 11: 677, https://doi.org/10.3389/fgene.2020.00677.
CABANILLA-LEGASPI M. I. C., TRAIFALGAR R. F. M., DE JESUS-AYSON E. G. T., ANDRINO-FELARCA K. G. S., and MAMAUAG R. E. P. Growth, metamorphosis and survival of orange-spotted rabbitfish (Siganus guttatus) larvae fed sodium iodide-supplemented brine shrimp (Artemia sp.). Aquaculture, 2021, 536: 736443, https://doi.org/10.1016/j.aquaculture.2021.736443.
DAVIS D. A., and HARDY R. W. Feeding and fish husbandry. in Fish Nutrition, Elsevier, 2022, (chapter 14): 857–882. https://doi.org/10.1016/B978-0-12-819587-1.00015-X.
GJEDREM T. Genetic improvement of cold-water fish species. Aquaculture Research, 2000, 31(1): 25–33, https://doi.org/10.1046/j.1365-2109.2000.00389.x.
PEPE-VICTORIANO R., ARAYA M., FAÚNDEZ V., and RODRÍGUEZ M. Optimización en el Manejo de Reproductores para una Mayor Producción de Huevos y Larvas de Psetta maxima (Linneaus, 1758). International Journal of Morphology, 2013, 31(3): 873–878, https://doi.org/10.4067/S0717-95022013000300015.
CHEN M., FAN M., LIU R., WANG X., YUAN X., and ZHU H. The dynamics of temperature and light on the growth of phytoplankton. Journal of Theoretical Biology, 2015, 385: 8–19, https://doi.org/10.1016/j.jtbi.2015.07.039.
HAMRE K. Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture, 2016, 450: 136–142, https://doi.org/10.1016/j.aquaculture.2015.07.016.
BOONCHERD K., SREEBUN S., PASOMBOON P., and BOONANUNTANASARN S. Effects of CRISPR/Cas9-mediated dnd1 knockout impairs gonadal development in striped catfish. Animal, 2024, 18(1): 101039, https://doi.org/10.1016/j.animal.2023.101039.
PULKKINEN K., SUOMALAINEN L.-R., READ A. F., EBERT D., RINTAMÄKI P., and VALTONEN E. T. Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proceedings of the Royal Society B: Biological Sciences, 2010, 277(1681): 593–600, https://doi.org/10.1098/rspb.2009.1659.
FUTAGAWA M., PIZARRO J., BUENO G., and DÍAZ J. P. Early development of the Peruvian rock seabass Paralabrax humeralis (Teleostei: Serranidae): morphological description of the embryonic and yolk-sac larval stages. Latin American Journal of Aquatic Research, 2021, 49(3): 520–525, https://doi.org/10.3856/vol49-issue3-fulltext-2631.
PEPE-VICTORIANO R., MIRANDA L., ORTEGA A., and MERINO G. E. Descriptive morphology and allometric growth of the larval development of Sarda chiliensis chiliensis (Cuvier, 1832) in a hatchery in northern Chile. Aquaculture Reports, 2021, 19: 100576, https://doi.org/10.1016/j.aqrep.2020.100576.
PEPE-VICTORIANO R., MIRANDA L., ORTEGA A., and MERINO G. First natural spawning of wild-caught premature south pacific bonito (Sarda chiliensis chiliensis, Cuvier 1832) conditioned in recirculating aquaculture system and a descriptive characterization of their eggs embryonic development. Aquaculture Reports, 2021, 19: 100563, https://doi.org/10.1016/j.aqrep.2020.100563.
NÆSS T., GERMAIN-HENRY M., and NAAS K. E. First feeding of Atlantic halibut (Hippoglossus hippoglossus) using different combinations of Artemia and wild zooplankton. Aquaculture, 1995, 130(2–3): 235–250, https://doi.org/10.1016/0044-8486(94)00323-G.
PERUMAL S., ANANTH S., NANDAKUMAR R., JAYALAKSHMI T., KAVIYARASAN M., and PACHIAPPAN P. Intensive Indoor and Outdoor Pilot-Scale Culture of Marine Copepods. in Advances in Marine and Brackishwater Aquaculture, New Delhi: Springer India, 2015: 33–42. https://doi.org/10.1007/978-81-322-2271-2_4.
NASROLAHI A., SARI A., SAIFABADI S., and MALEK M. Effects of algal diet on larval survival and growth of the barnacle Amphibalanus (Balanus) improvises. Journal of the Marine Biological Association of the United Kingdom, 2007, 87(5): 1227–1233, https://doi.org/10.1017/S0025315407057037.
VU M. T. T., DOUËTTE C., RAYNER T. A., THOISEN C., NIELSEN S. L., and HANSEN B. W. Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. Journal of Applied Phycology, 2016, 28(3): 1485–1500, https://doi.org/10.1007/s10811-015-0722-2.
HUISMAN J., JONKER R. R., ZONNEVELD C., and WEISSING F. J. Competition for Light between Phytoplankton Species: Experimental Tests of Mechanistic Theory. Ecology, 1999, 80(1): 211, https://doi.org/10.2307/176991
Refbacks
- There are currently no refbacks.