Biochemical Evaluation of Potential Antibacterial Activities of (2,6-Diethylphenyl)-5-Oxopyrrolidine Derivatives via In-Silico Study

Faith Eniola Olujinmi, Juliana Oluwasayo Aworinde, Oke David Gbenga, Olamide Olalekan, Abel Kolawole Oyebamiji

Abstract

The focus of several researchers has been drawn to the surge in bacterial activity among humans and the resistance to antibacterial agents. The increasing interest in developing long-lasting antibacterial agents has been observed. Therefore, the purpose of this study was to use an in-silico approach to examine the specific inhibitory activity of pyrrolidine derivatives against the investigated receptor. Therefore, the inhibitory activities of the (2,6-diethylphenyl)-5-oxopyrrolidine derivatives were investigated using insilico approach. In this study, various software programs were employed, including Spartan 14, AutoDock Tools, AutoDock Vina, and Discovery Studio. Compound 9 exhibits the greatest propensity to yield electrons, as indicated by the calculated HOMO, and according to LUMO and band gap, Compound 5 demonstrates the highest potential to accept electrons and exhibit superior reactivity among the other compounds studied. Compounds 8 to 12 displayed the most potent ability to inhibit the Bacillus cereus spor-lytic enzyme (PDB ID: 4PHQ) and Cytolysin A (ClyA) CC6/264 ox (6-303) SleL (PDB ID: 4S3J) compared to other studied ligands. Our findings may open the door for the design of a collection of proficient pyrrolidine-based drug-like molecules as potential antibacterial agents.

 

Keywords: 2-oxopyrrolidine, antibacterial agent, protein, inhibitors, docking.

 

https://doi.org/10.55463/issn.1674-2974.51.7.16


Full Text:

PDF


References


GÜNDÜZ M. G., UĞUR S. B., GÜNEY F., ÖZKUL C., KRISHNA V. S., KAYA S., SRIRAM D., and DOĞAN Ş. D. 1,3-Disubstituted urea derivatives: Synthesis, antimicrobial activity evaluation and in silico studies. Bioorganic Chemistry, 2020, 102: 104104. https://doi.org/10.1016/j.bioorg.2020.104104

KASARE S. L., GUND P. N., SATHE B. P., PATIL P. S., REHMAN N. N. M. A., DIXIT P. P., CHOUDHARI P. B., and HAVAL K. P. Synthesis, antimicrobial screening, and docking study of new 2‐(2‐ethylpyridin‐4‐yl)‐4‐methyl‐N‐phenylthiazole‐5‐carboxamide derivatives. Journal of the Chinese Chemical Society, 2021, 68(2): 353–361. https://doi.org/10.1002/jccs.202000174

SAYED M. A., ABDELSALAM H. K., and EL-BASSUONY A. A. H. Antimicrobial activity of novel spinel nanoferrites against pathogenic fungi and bacteria. World Journal of Microbiology and Biotechnology, 2020, 36(2): 25. https://doi.org/10.1007/s11274-020-2803-x

SHAABAN M. R., FARGHALY T. A., and ALSAEDI A. M. R. Synthesis, Antimicrobial and Anticancer Evaluations of Novel Thiazoles Incorporated Diphenyl Sulfone Moiety. Polycyclic Aromatic Compounds, 2022, 42(5): 2521–2537. https://doi.org/10.1080/10406638.2020.1837887

RAIMONDI M. V., PRESENTATO A., LI PETRI G., BUTTACAVOLI M., RIBAUDO A., DE CARO V., ALDUINA R., and CANCEMI P. New Synthetic Nitro-Pyrrolomycins as Promising Antibacterial and Anticancer Agents. Antibiotics, 2020, 9(6): 292. https://doi.org/10.3390/antibiotics9060292

CASCIOFERRO S., MAGGIO B., RAFFA D., RAIMONDI M. V., CUSIMANO M. G., SCHILLACI D., MANACHINI B., LEONCHIKS A., and DAIDONE G. A new class of phenylhydrazinylidene derivatives as inhibitors of Staphylococcus aureus biofilm formation. Medicinal Chemistry Research, 2016, 25(5): 870–878. https://doi.org/10.1007/s00044-016-1535-9

SPANÒ V., ROCCA R., BARRECA M., GIALLOMBARDO D., MONTALBANO A., CARBONE A., RAIMONDI M. V., GAUDIO E., BORTOLOZZI R., BAI R., and TASSONE P. Pyrrolo[2′,3′:3,4]cyclohepta[1,2-d][1,2]oxazoles, a New Class of Antimitotic Agents Active against Multiple Malignant Cell Types. Journal of Medicinal Chemistry, 2020, 63(20): 12023–12042. https://doi.org/10.1021/acs.jmedchem.0c01315

TAJABADI F. M., CAMPITELLI M. R., and QUINN R. J. Scaffold Flatness: Reversing the Trend. Springer Science Reviews, 2013, 1(1–2): 141–151. https://doi.org/10.1007/s40362-013-0014-7

MAIER M. E. Design and synthesis of analogues of natural products. Organic & Biomolecular Chemistry, 2015, 13(19): 5302–5343. https://doi.org/10.1039/C5OB00169B

ISLAM M. T., & MUBARAK M. S. Pyrrolidine alkaloids and their promises in pharmacotherapy. Advances in Traditional Medicine, 2020, 20(1): 13–22. https://doi.org/10.1007/s13596-019-00419-4

LIU X., LAI D., LIU Q., ZHOU L., LIU Q., and LIU Z. Bioactivities of a New Pyrrolidine Alkaloid from the Root Barks of Orixa Japonica. Molecules, 2016, 21(12): 1665. https://doi.org/10.3390/molecules21121665

BHAT C., & TILVE S. G. Recent advances in the synthesis of naturally occurring pyrrolidines, pyrrolizidines and indolizidine alkaloids using proline as a unique chiral synthon. RSC Advances, 2014, 4(11): 5405-5452. https://doi.org/10.1039/c3ra44193h

VITAKU E., SMITH D. T., and NJARDARSON J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals: Miniperspective. Journal of Medicinal Chemistry, 2014, 57(24): 10257–10274. https://doi.org/10.1021/jm501100b

KAIRYTĖ K., GRYBAITĖ B., VAICKELIONIENĖ R., SAPIJANSKAITĖ-BANEVIČ B., KAVALIAUSKAS P., and MICKEVIČIUS V. Synthesis and Biological Activity Characterization of Novel 5-Oxopyrrolidine Derivatives with Promising Anticancer and Antimicrobial Activity. Pharmaceuticals, 2022, 15(8): 970. https://doi.org/10.3390/ph15080970

SALGIN-GÖKŞEN U., GÖKHAN-KELEKÇI N., GÖKTAŞ Ö., KÖYSAL Y., KILIÇ E., IŞIK Ş., AKTAY G., and ÖZALP M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorganic & Medicinal Chemistry, 2007, 15(17): 5738–5751. https://doi.org/10.1016/j.bmc.2007.06.006

TIAN B., HE M., TANG S., HEWLETT I., TAN Z., LI J., JIN Y., and YANG M. Synthesis and antiviral activities of novel acylhydrazone derivatives targeting HIV-1 capsid protein. Bioorganic & Medicinal Chemistry Letters, 2009, 19(8): 2162–2167. https://doi.org/10.1016/j.bmcl.2009.02.116

ÖZKAY Y., TUNALI Y., KARACA H., and IŞIKDAĞ İ. Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazone moiety. European Journal of Medicinal Chemistry, 2010, 45(8): 3293–3298. https://doi.org/10.1016/j.ejmech.2010.04.012

KOLAWOLE O. A., FEMI T. G., KOLAWOLE O. E., and MONISOLA O. O. Computational Study on Selected Compounds in Garcinia Kola Seed as Potential Coronavirus Main Protease Inhibitors. Nature and Science, 2020, 18(9): 78-85. http://www.dx.doi.org/10.7537/marsnsj180920.10

ANGELOVA V., KARABELIOV V., ANDREEVA‐GATEVA P. A., and TCHEKALAROVA J. Recent Developments of Hydrazide/Hydrazone Derivatives and Their Analogs as Anticonvulsant Agents in Animal Models. Drug Development Research, 2016, 77(7): 379–392. https://doi.org/10.1002/ddr.21329

GHAZOUANI L., KHDHIRI E., ELMUFTI A., FERIANI A., TIR M., BAAZIZ I., HAJJI R., BEN MANSOUR H., AMMAR H., ABID S., and MNAFGUI K. Cardioprotective effects of (E)-4-hydroxy-N′-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)benzohydrazide: a newly synthesized coumarin hydrazone against isoproterenol-induced myocardial infarction in a rat model. Canadian Journal of Physiology and Pharmacology, 2019, 97(10): 989–998. https://doi.org/10.1139/cjpp-2019-0085

CASANOVA B., MUNIZ M., DE OLIVEIRA T., DE OLIVEIRA L., MACHADO M., FUENTEFRIA A., GOSMANN G., and GNOATTO S. C. Synthesis and Biological Evaluation of Hydrazone Derivatives as Antifungal Agents. Molecules, 2015, 20(5): 9229–9241. https://doi.org/10.3390/molecules20059229

ŽUKAUSKAS M., GRYBAITĖ B., VAICKELIONIENĖ R., VAICKELIONIS G., ŠIUGŽDAITĖ J., and MICKEVIČIUS V. Synthesis and antibacterial evaluation of novel 1-(2,6-diethylphenyl)-5-oxopyrrolidine derivatives. Chemija, 2020, 31(4): 290–298. https://doi.org/10.6001/chemija.v31i4.4327

OYEBAMIJI A. K., AKINTELU S. A., SEMIRE B., OLANREWJU A. A., AKINTAYO E. T., AKINTAYO C. O., ADUBIARO H. O., EBENEZER O., and BABALOLA J. O. Molecular modeling insights into bioactivities of head-to-tail cyclic peptides: potential sedoheptulose-7-phosphate isomerase inhibitors. Advanced Journal of Chemistry, Section A, 2024, 7(2): 146-162. https://doi.org/10.48309/ajca.2024.418437.1426

OYEBAMIJI A. K., BABALOLA J. O., ODELADE K. A., AKINTELU S. A., NUBI O. A., AWORINDE H. O., FABORO E., AKINTAYO E. T., and SEMIRE B. Potential inhibiting activities of phytochemicals in Scilla natalensis bulbs against schistosomiasis. Ecletica Quimica, 2023, 48(3): 54–80. https://doi.org/10.26850/1678-4618eqj.v48.3.2023.p54-80


Refbacks

  • There are currently no refbacks.