Encapsulation of Ethanol Extract Sonneratia Alba Leaves with Inulin Matrix Coating as an Antioxidant Supplement
Abstract
Perepat (Sonneratia alba) is a mangrove species widely reported to have potential as a medicinal plant. Encapsulation in coating technology has been developed to prevent bioactive damage and to improve bioavailability. This study aimed to analyze the characteristics of ethanol extracts of Sonneratia alba (S. alba) leaves encapsulated using an inulin coating and to determine the encapsulation ability of ethanol extracts from perepat leaves. The highest total phenol and flavonoid extract levels were obtained in PKL at 171,880 mg GAE/g and 25,473 mg QE/g, respectively, in line with its antioxidant activity (IC50 3,544 μg/mL). The highest total phenol and flavonoid levels were obtained in PKL encapsulating 38.963 mg GAE/g and 5.583 mg QE/g, respectively, with an IC50 of 91.571 μg/mL. IR results of encapsulated ethanol extracts of S. alba leaves from four different regions showed the presence of C-H alkane functional groups, C-H alkene functional groups, C-H aromatic ring functional groups, O-H functional groups, hydrogen/phenol bond alcohols, C=C alkene functional groups, and C-O functional groups of alcohol/ether/carboxylic acids/esters. The IR spectrum confirms the cross-linking reaction and the formation of the Encapsule. SEM produces particles of various sizes, irregular surface structures, and deep hollows in walls. The results of in vitro bioavailability testing of ethanol extract encapsulation from perepat leaves with inulin coating of PKL showed an increase in the percentage of drug release in the pH buffer 1.2 from the previous minute to minute 120, which increased to 41.41%. In the pH buffer 7.4 from the last minute to minute 240, there was an increase in drug release, reaching 98.54%. This finding shows that encapsulation of the extract has good potential as a capsule supplement.
Keywords: antioxidant, bioavailability, encapsule, Sonneratia alba.
Full Text:
PDFReferences
PRIOSAMBODO D., JUHRIAH, ALAM M., AL-ANSHARI M., and PUTRA A. W. Species composition and structure of mangrove in Tamo Rocky Cliff Beach Majene (West Sulawesi, Indonesia). Journal of Physics: Conference Series, 2019, 1341(2): 022021. https://doi.org/10.1088/1742-6596/1341/2/022021
INDRAJAYA Y., YUWATI T. W., LESTARI S., WINARNO B., NARENDRA B. H., NUGROHO H. Y. S. H., RACHMANADI D., PRATIWI, TURJAMAN M., ADI R. N., SAVITRI E., PUTRA P. B., SANTOSA P. B., NUGROHO N. P., CAHYONO S. A., WAHYUNINGTYAS R. S., PRAYUDYANINGSIH R., HALWANY W., SIARUDIN M., WIDIYANTO A., UTOMO M. M. B., SUMARDI, WINARA A., WAHYUNI T., and MENDHAM D. Tropical Forest Landscape Restoration in Indonesia: A Review. Land, 2022, 11(3): 328. https://doi.org/10.3390/land11030328
LATIEF M., MUHAIMIN M., AMANDA H., TARIGAN I. L., and AISYAH S. Isolation of alkaloids compound of ethanol extract of mangrove perepat (S. alba) root and its antibacterial activity. Jurnal Ilmiah Farmasi, 2021, 17(1): 9–18. https://doi.org/10.20885/jif.vol17.iss1.art2
KULKARNII C. P., & MANOHAR S. M. A review of botany, phytochemistry, and pharmacology of the mangrove apple Sonneratia alba J. Sm. Journal of Applied Pharmaceutical Science, 2024, 14(5): 001–011. https://doi.org/10.7324/JAPS.2024.181289
CHUMYAM A., WHANGCHAI K., JUNGKLANG J., FAIYUE B., and SAENGNIL K. Effects of heat treatments on antioxidant capacity and total phenolic content of four cultivars of purple skin eggplants. ScienceAsia, 2013, 39(3): 246-251. https://doi.org/10.2306/scienceasia1513-1874.2013.39.246
ELGAMAL R., SONG C., RAYAN A. M., LIU C., AL-REJAIE S., and ELMASRY G. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy, 2023, 13(6): 1580. https://doi.org/10.3390/agronomy13061580
MAGHSOUDLOU Y., ASGHARI GHAJARI M., and TAVASOLI S. Effects of heat treatment on the phenolic compounds and antioxidant capacity of quince fruit and its tisane’s sensory properties. Journal of Food Science and Technology, 2019, 56(5): 2365–2372. https://doi.org/10.1007/s13197-019-03644-6
DELVIANI, MAHARANI V. G. R., SHADRINA P. N., ALI N., and TARIGAN I. L. Synthesis of Carboxymethyl Cellulose from Mangrove Nipah (Nypa fruticans) as Vitamin C Coating for Drug Delivery System. Chempublish Journal, 2024, 8(1): 19-28. https://doi.org/10.22437/chp.v8i1.31722
POORNA C. A., MANEY S. K., SANTHOSHKUMAR T. R., and SONIYA E. V. Phytochemical analysis and in vitro screening for biological activities of Acanthus ilicifolius. Journal of Pharmacy Research, 2011, 4(7): 1977-1981. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4ab96069212cd9f9527a1aeef0150bad6d6d8651
N’GUESSAN-GNAMAN K. C., TUO-KOUASSI N. A., DALLY I., AKA-ANY-GRAH S., CHOUGOUO KENGNE-NKUITCHOU R. D., LIA A. J., ANIN A. L., and N’GUESSAN A. Encapsulation Methods and Releasing Mechanisms of Encapsulated Active Drug. Journal of Drug Delivery and Therapeutics, 2024, 14(1): 155–168. https://doi.org/10.22270/jddt.v14i1.6356
PUDZIUVELYTE L., MARKSA M., SOSNOWSKA K., WINNICKA K., MORKUNIENE R., and BERNATONIENE J. Freeze-Drying Technique for Microencapsulation of Elsholtzia ciliata Ethanolic Extract Using Different Coating Materials. Molecules, 2020, 25(9): 2237. https://doi.org/10.3390/molecules25092237
WARDHANI D. H., WARDANA I. N., ULYA H. N., CAHYONO H., KUMORO A. C., and ARYANTI N. The effect of spray-drying inlet conditions on iron encapsulation using hydrolysed glucomannan as a matrix. Food and Bioproducts Processing, 2020, 123: 72–79. https://doi.org/10.1016/j.fbp.2020.05.013
HERIYANTI H., PUTRI Y. E., IRAWAN H., RAZA’I T. S., TARIGAN I. L., KARTIKA E., ICHWAN B., and LATIEF M. Encapsulation of Ethanol Extract Perepat Leaves (Sonneratia alba) with Maltodextrin Coating as an Antioxidant Functional Food Candidate. Indonesian Food Science and Technology Journal, 2024, 7(2): 193–201. https://doi.org/10.22437/ifstj.v7i2.34013
TARIGAN I. L., KHARISMA T., BEMIS R., SUTRISNO S., and LATIEF M. Encapsulation of Jeruju Leaves Ethanol Extract (Acanthus ilicifolius L.) and It’s Antiinflammatory Activities against Carrageenan-Induced Mice. Molekul, 2023, 18(3): 468-478. https://doi.org/10.20884/1.jm.2023.18.3.8820
FADLY D., PURWAYANTIE S., and ARUNDHANA A. I. Total Phenolic Content, Antioxidant Activity and Glycemic Values of Non-Meat Burger Patties. Canrea Journal: Food Technology, Nutritions, and Culinary Journal, 2020, 3(1): 1–9. https://doi.org/10.20956/canrea.v3i1.246
JAFARI S. M., ASSADPOOR E., HE Y., and BHANDARI B. Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Drying Technology, 2008, 26(7): 816–835. https://doi.org/10.1080/07373930802135972
PRAKASH B., KUJUR A., YADAV A., KUMAR A., SINGH P. P., and DUBEY N. K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control, 2018, 89: 1–11. https://doi.org/10.1016/j.foodcont.2018.01.018
NINGSIH R., SUDARNO, and AGUSTONO. The Effect of Maltodextrin Concentration on the Characteristics of Snappers’ (Lutjanus sp.) Peptone. IOP Conference Series: Earth and Environmental Science, 2019, 236: 012127. https://doi.org/10.1088/1755-1315/236/1/012127
HARTIATI A., & MULYANI S. The Effect of Maltodextrin Concentration and Drying Temperature to Antioxidant Content of Sinom Beverage Powder. Agriculture and Agricultural Science Procedia, 2015, 3: 231–234. https://doi.org/10.1016/j.aaspro.2015.01.045
XIAO Z., XIA J., ZHAO Q., NIU Y., and ZHAO D. Maltodextrin as wall material for microcapsules: A review. Carbohydrate Polymers, 2022, 298: 120113. https://doi.org/10.1016/j.carbpol.2022.120113
GÜLSOY E., KAYA E. D., TÜRKHAN A., BULUT M., KOYUNCU M., GÜLER E., SAYIN F., and MURADOĞLU F. The Effect of Altitude on Phenolic, Antioxidant and Fatty Acid Compositions of Some Turkish Hazelnut (Coryllus avellana L.) Cultivars. Molecules, 2023, 28(13): 5067. https://doi.org/10.3390/molecules28135067
LIU W., YIN D., LI N., HOU X., WANG D., LI D., and LIU J. Influence of Environmental Factors on the Active Substance Production and Antioxidant Activity in Potentilla fruticosa L. and Its Quality Assessment. Scientific Reports, 2016, 6(1): 28591. https://doi.org/10.1038/srep28591
KABORÉ K., KONATÉ K., BAZIÉ D., DAKUYO R., SANOU A., SAMA H., SANTARA B., and DICKO M. H. Effects of growing zones on nutritional and bioactive compounds of by-products of two tomato cultivars. Journal of Agriculture and Food Research, 2022, 10: 100414. https://doi.org/10.1016/j.jafr.2022.100414
SHARMA K., KO E. Y., ASSEFA A. D., HA S., NILE S. H., LEE E. T., and PARK S. W. Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. Journal of Food and Drug Analysis, 2015, 23(2): 243–252. https://doi.org/10.1016/j.jfda.2014.10.005.
HENECZKOWSKI M., KOPACZ M., NOWAK D., and KUŹNIAR A. Infrared spectrum analysis of some flavonoids. Acta Poloniae Pharmaceutica - Drug Research, 2002, 58(6): 415–420. https://ptfarm.pl/pub/File/Acta_Poloniae/2001/6/415.pdf
WONGVERAWATTANAKUL C., SUKLAEW P. O., CHUSAK C., ADISAKWATTANA S., and THILAVECH T. Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion. Foods, 2022, 11(15): 2378. https://doi.org/10.3390/foods11152378
NIZORI A., BUI L. T. T., JIE F., and SMALL D. M. Spray‐drying microencapsulation of ascorbic acid: impact of varying loading content on physicochemical properties of microencapsulated powders. Journal of the Science of Food and Agriculture, 2020, 100(11): 4165–4171. https://doi.org/10.1002/jsfa.10455
NIZORI A., BUI L. T. T., JIE F., and SMALL D. M. Impact of varying hydrocolloid proportions on encapsulation of ascorbic acid by spray drying. International Journal of Food Science & Technology, 2018, 53(6): 1363–1370. https://doi.org/10.1111/ijfs.13699
ABASALIZADEH F., MOGHADDAM S. V., ALIZADEH E., AKBARI E., KASHANI E., FAZLJOU S. M. B., TORBATI M., and AKBARZADEH A. Correction to: Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of Biological Engineering, 2020, 14(1): 17. https://doi.org/10.1186/s13036-020-00239-0
ŠTURM L., OSOJNIK ČRNIVEC I. G., ISTENIČ K., OTA A., MEGUŠAR P., SLUKAN A., HUMAR M., LEVIC S., NEDOVIĆ V., KOPINČ R., DEŽELAK M., PEREYRA GONZALES A., and POKLAR ULRIH N. Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food and Bioproducts Processing, 2019, 116: 196–211. https://doi.org/10.1016/j.fbp.2019.05.008
Refbacks
- There are currently no refbacks.