Electrical Characteristics of Half-Cut Bifacial PERC Monocrystalline Photovoltaic Modules under Outdoor Conditions in Nawabshah

Muhammad Moosa Jakhrani, Abdul Sattar Saand, Abdul Qayoom Jakhrani, Abdul Rehman Jatoi, Kishan Chand Mukwana

Abstract

Photovoltaic modules are typically rated and tested in laboratories under standard test conditions. Such conditions cannot be maintained outdoors due to the random nature of environmental conditions and operating parameters, such as the topography of the target location, slope, orientation, elevation, albedo, and available technologies. The impact of the backside of bifacial modules on electricity generation remains uncertain due to their ability to generate power from both the front and back surfaces. This study aims to experimentally analyze and predict the electrical characteristics of half-cut bifacial PERC monocrystalline photovoltaic (PV) modules under outdoor conditions in Nawabshah. In this connection, an experimental system was mounted over a departmental building for data recording and analysis. The global solar radiation (Grad) of the study site was measured using a light meter (HD-2302), and the ambient temperature (Ta), wind speed (Ws), and relative humidity (Rh) were measured using a digital anemometer PROVA AVM-05. The electrical characteristics of both the front and back sides of the modules were documented using PROVA-1101. These data were collected consistently from 09:00 to 16:00, at hourly intervals, over a period of five months spanning from February to June 2023. In addition, different existing models were used to predict the electrical characteristics of bifacial PV modules based on recorded data. During the analysis period, it was observed that the front side of the modules generated approximately 91% of the output power, while the backside accounted for 9%. The Evan–Florschuetz model equation was found to be more suitable for predicting bifacial module efficiency because it gives less error based on measured data.

 

Keywords: ambient temperature, half-cut bifacial photovoltaic module, humidity, statistical analysis, solar radiation, wind speed.

 

https://doi.org/10.55463/issn.1674-2974.51.5.17


Full Text:

PDF


References


JAKHRANI A. Q., OTHMAN A. K., RIGIT A. R. H., and SAMO S. R. Assessment of solar and wind energy resources at five typical locations in Sarawak. Journal of Energy and Environment, 2013, 4(1): 1-6. https://journal.uniten.edu.my/index.php/jee/article/view/120

KARABULUT M., KUSETOGULLARI H., and KIVRAK S. Outdoor performance assessment of new and old photovoltaic panel technologies using a designed multi-photovoltaic panel power measurement system. International Journal of Photoenergy, 2020, 2020(1): 8866412. https://doi.org/10.1155/2020/8866412

IEA. Renewables 2019. IEA, Paris, 2019. https://www.iea.org/reports/renewables-2019

JATOI A. R., SAMO S. R., and JAKHRANI A. Q. Influence of temperature on electrical characteristics of different photovoltaic module technologies. International Journal of Renewable Energy, 2018, 7(2): 85-91. https://doi.org/10.14710/ijred.7.2.85-91

JAKHRANI A. Q., OTHMAN A. K., RIGIT A. R., SAMO S. R., and KAMBOH S. A. Estimation of incident solar radiation on tilted surface by different empirical models. International Journal of Scientific and Research Publications, 2012, 2(12): 1-6. https://www.ijsrp.org/research-paper-1212.php?rp=P12487

JAKHRANI A. Q., OTHMAN A. K., RIGIT A. R. H., BAINI R., SAMO S. R., and LING L. P. Investigation of Solar Photovoltaic Module Power Output by Various Models. NED University Journal of Research, 2012, Thematic Issue on Energy: 25-34. https://www.neduet.edu.pk/NED-Journal/12enervolpaper3.html

JATOI A. R., SAMO S. R., and JAKHRANI A. Q. An improved empirical model for estimation of temperature effect on performance of photovoltaic modules. International Journal of Photoenergy, 2019, 2019(1): 1681353. https://doi.org/10.1155/2019/1681353

BARYKINA E., & HAMMER A. Modeling of photovoltaic module temperature using Faiman model: sensitivity analysis for different climates. Solar Energy, 2017, 146: 401–416. https://doi.org/10.1016/j.solener.2017.03.002

NTDC. Power System Statistics. 43rd ed. NTDC, Lahore, 2018.

YAQOOB H., TEOH Y. H., DIN Z. U., SABAH N. U., JAMIL M. A., MUJTABA M. A., and ABID A. The potential of sustainable biogas production from biomass waste for power generation in Pakistan. Journal of Cleaner Production, 2021, 307: 127250. https://doi.org/10.1016/j.jclepro.2021.127250

ADNAN S., KHAN A. H., HAIDER S., and MAHMOOD R. Solar energy potential in Pakistan. Journal of Renewable and Sustainable Energy, 2012, 4(3): 032701. https://doi.org/10.1063/1.4712051

KALOGIROU S. A. Solar energy engineering: processes and systems. Academic Press, Elsevier, Amsterdam, 2014.

JAKHRANI A. Q., SAMO S. R., KAMBOH S. A., LABADIN J., and RIGIT A. R. H. An improved mathematical model for computing power output of solar photovoltaic modules. International Journal of Photoenergy, 2014, 2014(1): 346704. https://doi.org/10.1155/2014/346704

DUFFIE J. A., & BECKMAN W. A. Solar engineering of thermal processes. 4th ed. John Wiley & Sons, New York, 2013. https://doi.org/10.1002/9781118671603

JATOI A. R., SAMO S. R., and JAKHRANI A. Q. Performance evaluation of various photovoltaic module technologies at Nawabshah Pakistan. International Journal of Renewable Energy Development, 2021, 10(1): 97-103. https://doi.org/10.14710/ijred.2021.32352

EVELOY V., RODGERS P., and BOJANAMPATI S. Enhancement of photovoltaic solar module performance for power generation in the Middle East. Proceedings of the 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, California, 2012, pp. 87-97. https://doi.org/10.1109/STHERM.2012.6188831

ABDULGAFAR S. A., OMAR O. S., and YOUSIF K. M. Improving the efficiency of polycrystalline solar panel via water immersion method. International Journal of Innovative Research in Science, Engineering and Technology, 2014, 3(1): 8127-8132. https://www.ijirset.com/upload/2014/january/5_Improving.pdf

DULLWEBER T., & SCHMIDT J. Industrial silicon solar cells applying the passivated emitter and rear cell (PERC) concept - a review. IEEE Journal of Photovoltaics, 2016, 6(5): 1366-1381. https://doi.org/10.1109/JPHOTOV.2016.2571627

DULLWEBER T., SCHULTE-HUXEL H., BLANKEMEYER S., HANNEBAUER H., SCHIMANKE S., BAUMANN U., WITTECK R., PEIBST R., KÖNTGES M., and BRENDEL R. Present status and future perspectives of bifacial PERC+ solar cells and modules. Japanese Journal of Applied Physics, 2018, 57: 08RA01. https://doi.org/10.7567/JJAP.57.08RA01

SIDDIQUI A., BEKTAŞ G., NASSER H., TURAN R., and USMAN M. Impact of ion implantation and annealing parameters on bifacial PERC and PERT solar cell performance. Sustainable Energy Technologies and Assessments, 2022, 53(Part B): 102583. https://doi.org/10.1016/j.seta.2022.102583

GHOSH S., & YADAV R. Future of photovoltaic technologies - a comprehensive review. Sustainable Energy Technologies and Assessments, 2021, 47: 101410. https://doi.org/10.1016/j.seta.2021.101410

DELINE C., MACALPINE S., MARION B., TOOR F., ASGHARZADEH A., and STEIN J. S. Assessment of bifacial photovoltaic module power rating methodologies - inside and out. IEEE Journal of Photovoltaics, 2017, 7(2): 575-580. https://doi.org/10.1109/JPHOTOV.2017.2650565

LU W. Power generation characteristics of bifacial photovoltaic modules under different backgrounds. Proceedings of the IEEE International Conference on Artificial Intelligence and Computer Applications, Dalian, 2021, pp. 470-473. https://doi.org/10.1109/ICAICA52286.2021.9498001

BALDUS-JEURSEN C., PETSUIK A. L., RHEAULT S. A., PELLAND S., CÔTÉ A., POISSANT Y., and PEARCE J. M. Snow Losses for Photovoltaic Systems: Validating the Marion and Townsend Models. IEEE Journal of Photovoltaics, 2023, 13(4): 610-620. https://doi.org/10.1109/JPHOTOV.2023.3264644

TAO Y., BAI J., PACHAURI R. K., WANG Y., LI J., and ATTAHER H. K. Parameterizing mismatch loss in bifacial photovoltaic modules with global deployment: a comprehensive study. Applied Energy, 2021, 303: 117636. https://doi.org/10.1016/j.apenergy.2021.117636

SKOPLAKI E., & PALYVOS J. A. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Solar Energy, 2009, 83(5): 614-624. https://doi.org/10.1016/j.solener.2008.10.008

JATOI A. R., SAMO S. R., and JAKHRANI A. Q. Influence of ambient temperature and solar radiations on photovoltaic module’s temperature and power output. International Journal of Natural and Engineering Science, 2016, 10(2): 43-47.

BASHIR M. A., ALI H. M., KHALIL S., ALI M., and SIDDIQUI A. M. Comparison of performance measurements of photovoltaic modules during winter months in Taxila, Pakistan. International Journal of Photoenergy, 2014, 2014(1): 898414. https://doi.org/10.1155/2014/898414

EVANS D. L., & FLORSCHUETZ L. W. Cost studies on terrestrial photovoltaic power systems with sunlight concentration. Solar Energy, 1977, 19: 255–262. https://doi.org/10.1016/0038-092X(77)90068-8

PERLMAN J., MCNAMARA A., and STROBINO D. Analysis of PV system performance versus modelled expectations across a set of identical PV systems. Proceedings of the ISES Solar World Congress, 2005. https://www.brightpower.com/wp-content/uploads/2016/09/Analysis-of-PV-System-Performance-Versus-Modeled-Expectations-Across-a-Set-of-Identical-PV-Systems.pdf

NOTTON G., CRISTOFARI C., MATTEI M., and POGGI P. Modelling of a double-glass photovoltaic module using finite differences. Applied Thermal Engineering, 2005, 25: 2854–2877. https://doi.org/10.1016/j.applthermaleng.2005.02.008

BAZILIAN M. D., & PRASAD D. Modelling of a photovoltaic heat recovery system and its role in a design decision support tool for building professionals. Renewable Energy, 2002, 27: 57–68. https://doi.org/10.1016/S0960-1481(01)00165-3

YAMAGUCHI T., OKAMOTO Y., and TABERI M. Investigation on abundant photovoltaic power generated by 40 kW PV system in Wakayama National College of Technology. Solar Energy Materials and Solar Cells, 2003, 75(3-4): 597–601. https://doi.org/10.1016/S0927-0248(02)00158-7

DAS U. K., TEY K. S., SEYEDMAHMOUDIAN M., MEKHILEF S., IDRIS M. Y. I., VAN DEVENTER W., HORAN B., and STOJCEVSKI A. Forecasting of photovoltaic power generation and model optimization: a review. Renewable and Sustainable Energy Reviews, 2018, 81: 912-928. https://doi.org/10.1016/j.rser.2017.08.017

CHAUDHRY S. M. Introduction to Statistical Theory, Part-1. Markazi Kutub Khana, Lahore, 2013.

LUO C., WU Y., SU X., ZOU W., YU Y., JIANG Q., and XU L. Influence and characteristic of shading on photovoltaic performance of bifacial modules and method for estimating bifacial gain. Building Simulation, 2023, 16: 1821–1833. https://doi.org/10.1007/s12273-022-0966-0


Refbacks

  • There are currently no refbacks.