In Vitro Drug-Drug Interaction of Metformin HCl with Omeprazole and Lansoprazole

Shereen, Sohail Hassan, Syed Ghulam Musharraf, Qazi Syed Iftikhar Hayat, Nazia Tabbusum, Syeda Tehreem, Syeda Rafia Zehra Rizvi, Iffat Sultana, Yusra Khan

Abstract

Metformin HCl is an effective oral hypoglycemic agent for glycemic control in diabetes mellitus type 2 patients. Metformin HCl with omeprazole and lansoprazole is often required to control glycemia and cure GERD simultaneously. This raised the probability of drug-drug interactions of metformin HCl with omeprazole and lansoprazole. This study evaluated the in vitro drug-drug interaction between metformin HCl with omeprazole and lansoprazole by applying a dissolution test followed by UPLC analysis. The dissolution test of metformin HCl was conducted both independently and in conjunction with omeprazole and lansoprazole under two gastrointestinal conditions. The study then assessed the quantitative impact of omeprazole and lansoprazole on a single dose of metformin HCl using UPLC analysis. The study results demonstrated that the availability and release percentage of metformin HCl in vitro increased in simulated gastrointestinal conditions when administered with lansoprazole and omeprazole. The dissolution profiles of metformin HCl reference and test batches in the simulated gastrointestinal fluid showed dissimilarity according to the fit factors (f2 and f1). The ANOVA revealed significant results at a 95% CI (P<0.05) when comparing the mean percent release of metformin HCl. This confirms notable differences in the dissolution profiles between the reference and test batches in simulated gastrointestinal fluid. This in vitro metformin HCl, omeprazole, and lansoprazole drug-drug interaction study concluded that metformin HCl in vitro availability increases, which consequently affects bioavailability and could enhance the therapeutic efficacy of metformin HCl. Additional in vivo research is necessary to fully understand the clinical implications of this drug-drug interaction. It is recommended that the co-administration of metformin HCl with omeprazole and lansoprazole be closely monitored, and simultaneous intake of metformin HCl with omeprazole and lansoprazole be avoided.

 

Keywords: metformin HCl, omeprazole, lansoprazole, UPLC.

 

https://doi.org/10.55463/issn.1674-2974.51.5.13


Full Text:

PDF


References


BAILEY C. J. Metformin: historical overview. Diabetologia, 2017, 60(9): 1566-1576. https://doi.org/10.1007/s00125-017-4318-z

KIRPICHNIKOV D., MCFARLANE S. I., and SOWERS J. R. Metformin: an update. Annals of Internal Medicine, 2002, 137(1): 25-33. https://doi.org/10.7326/0003-4819-137-1-200207020-00009

MAIDEEN N. M. P., JUMALE A., and BALASUBRAMANIAM R. Drug interactions of metformin involving drug transporter proteins. Advanced Pharmaceutical Bulletin, 2017, 7(4): 501–505. https://doi.org/10.15171/apb.2017.062

TRIPLITT C. Drug interactions of medications commonly used in diabetes. Diabetes Spectrum, 2006, 19(4): 202-211. https://doi.org/10.2337/diaspect.19.4.202

PALLERIA C., DI PAOLO A., GIOFRÈ C., CAGLIOTI C., LEUZZI G., SINISCALCHI A., DE SARRO G., and GALLELLI L. Pharmacokinetic drug-drug interaction and their implication in clinical management. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 2013, 18(7): 601-610. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897029/

DOBRICĂ E. C., GĂMAN M. A., COZMA M. A., BRATU O. G., PANTEA STOIAN A., and DIACONU C. C. Polypharmacy in Type 2 Diabetes Mellitus: Insights from an Internal Medicine Department. Medicina, 2019, 55(8): 436. https://doi.org/10.3390/medicina55080436

SCHÄFER G. Guanidines and biguanides. Pharmacology & Therapeutics, 1980, 8(2): 275-295. https://doi.org/10.1016/0163-7258(80)90049-2

MARUTHUR N. M., TSENG E., HUTFLESS S., WILSON L. M., SUAREZ-CUERVO C., BERGER Z., CHU Y., IYOHA E., SEGAL J. B., and BOLEN S. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Annals of Internal Medicine, 2016, 164(11): 740-751. https://doi.org/10.7326/M15-2650

NIES A. T., HOFMANN U., RESCH C., SCHAEFFELER E., RIUS M., and SCHWAB M. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PLoS ONE, 2011, 6(7): e22163. https://doi.org/10.1371/journal.pone.0022163

NISHIDA T., TSUJI S., TSUJII M., ARIMITSU S., SATO T., HARUNA Y., MIYAMOTO T., KANDA T., KAWANO S., and HORI M. Gastroesophageal reflux disease related to diabetes: analysis of 241 cases with type 2 diabetes mellitus. Journal of Gastroenterology and Hepatology, 2004, 19(3): 258-265. https://doi.org/10.1111/j.1440-1746.2003.03288.x

BYTZER P., TALLEY N. J., HAMMER J., YOUNG L. J., JONES M. P., and HOROWITZ M. GI symptoms in diabetes mellitus are associated with both poor glycemic control and diabetic complications. American Journal of Gastroenterology, 2002, 97(3): 604-611. https://doi.org/10.1016/S0002-9270(01)04099-0

GALETIN A., GERTZ M., and HOUSTON J. B. Potential role of intestinal first-pass metabolism in the prediction of drug–drug interactions. Expert Opinion on Drug Metabolism & Toxicology, 2008, 4(7): 909-922. https://doi.org/10.1517/17425255.4.7.909

BYTZER P., TALLEY N. J., LEEMON M., YOUNG L. J., JONES M. P., and HOROWITZ M. Prevalence of gastrointestinal symptoms associated with diabetes mellitus: a population-based survey of 15 000 adults. Archives of Internal Medicine, 2001, 161(16): 1989-1996. https://doi.org/10.1001/archinte.161.16.1989

SELLIN J. H., & CHANG E. B. Therapy insight: gastrointestinal complications of diabetes—pathophysiology and management. Nature Clinical Practice Gastroenterology & Hepatology, 2008, 5(3): 162-171. https://doi.org/10.1038/ncpgasthep1054

ZHANG Y. S., LI Q., HE B. S., LIU R., and LI Z. J. Proton pump inhibitors therapy vs H2 receptor antagonists therapy for upper gastrointestinal bleeding after endoscopy: a meta-analysis. World Journal of Gastroenterology, 2015, 21(20): 6341–6351. https://doi.org/10.3748/wjg.v21.i20.6341

HERSHCOVICI T., JHA L. K., GADAM R., CUI H., GERSON L., THOMSON S., and FASS R. The relationship between type 2 diabetes mellitus and failure to proton pump inhibitor treatment in gastroesophageal reflux disease. Journal of Clinical Gastroenterology, 2012, 46(8): 662-668. https://doi.org/10.1097/MCG.0b013e31824e139b

GONG L., GOSWAMI S., GIACOMINI K. M., ALTMAN R. B., and KLEIN T. E. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenetics and Genomics, 2012, 22(11): 820-827. https://doi.org/10.1097/FPC.0b013e3283559b22

BUDHA N. R., FRYMOYER A., SMELICK G. S., JIN J. Y., YAGO M. R., DRESSER M. J., HOLDEN S. N., BENET L. Z., and WARE J. A. Drug absorption interactions between oral targeted anticancer agents and PPIs: is pH‐dependent solubility the Achilles heel of targeted therapy? Clinical Pharmacology & Therapeutics, 2012, 92(2): 203-213. https://doi.org/10.1038/clpt.2012.73

KAR M., & CHOUDHURY P. K. HPLC method for estimation of metformin hydrochloride in formulated microspheres and tablet dosage form. Indian Journal of Pharmaceutical Sciences, 2009, 71(3): 318–320. https://doi.org/10.4103/0250-474X.56031

CHUONG M. C., ALSULIMANI H., ALABI S., AL-SAIF N., DAMGALI S., KILLIOGLU S., LA S., PATEL P., PRASAD D., TAN J., and UBHE A. Convolution Study and the Alcoholic Beverage Effect on Lansoprazole Delayed-Release Capsules and Application of Similarity Factor to Two-Stage In-Vitro Dissolution Paradigm. International Journal of Pharmaceutical Sciences and Research, 2015, 6(3): 1002-1012. http://dx.doi.org/10.13040/IJPSR.0975-8232.6(3).1002-12

ANDERSON N. H., BAUER M., BOUSSAC N., KHAN-MALEK R., MUNDEN P., and SARDARO M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. Journal of Pharmaceutical and Biomedical Analysis, 1998, 17(4-5): 811-822. https://doi.org/10.1016/S0731-7085(98)00011-9

OGOCHUKWU U., CHRISTIANAH I., MARLENE E., SABINUS O., and MARTINS E. Quality assessment of some brands of clarithromycin and azithromycin tablets using the concept of dissolution efficiency and similarity factor. International Journal of Pharmaceutical Sciences and Research, 2018, 9(12): 5401-5410. http://dx.doi.org/10.13040/IJPSR.0975-8232.9(12).5401-10

DIAZ D. A., COLGAN S. T., LANGER C. S., BANDI N. T., LIKAR M. D., and VAN ALSTINE L. Dissolution similarity requirements: how similar or dissimilar are the global regulatory expectations? The AAPS Journal, 2016, 18: 15-22. https://doi.org/10.1208/s12248-015-9830-9

SARSTEDT M., & MOOI E. Regression Analysis. In: A Concise Guide to Market Research. Springer Texts in Business and Economics. Springer, Berlin, Heidelberg, 2019: 209-256. https://doi.org/10.1007/978-3-662-56707-4_7

OGAWA R., & ECHIZEN H. Drug-drug interaction profiles of proton pump inhibitors. Clinical Pharmacokinetics, 2010, 49: 509-533. https://doi.org/10.2165/11531320-000000000-00000

ZAID A. N., SHRAIM N., RADWAN A., JARADAT N., HIRZALLAH S., ISSA I., and KHRAIM A. Does GastroPlus Support Similarity and Dissimilarity Factors of in vitro-in vivo Prediction in Biowaiver Studies? A Lower Strength Amlodipine As a Model Drug. Drug Research, 2018, 68(11): 625-630. https://doi.org/10.1055/a-0611-4927

KIM T. K. Understanding one-way ANOVA using conceptual figures. Korean Journal of Anesthesiology, 2017, 70(1): 22-26. https://doi.org/10.4097/kjae.2017.70.1.22


Refbacks

  • There are currently no refbacks.