The Multi-Step Adomian Decomposition Method Applied to an SEIR COVID-19 Mathematical Model with a Vaccinated Population

Luis Blanco-Cocom

Abstract

This paper presents a novel multistep approach with a new criterion to enhance the convergence interval of the Adomian decomposition method (ADM). The objective of this research was to apply the multi-step ADM to obtain an analytical solution for a mathematical model of the SEIR COVID-19 outbreak that includes partially and fully vaccinated individuals. The accuracy and efficiency of this method are demonstrated through a comparison with the existing literature. Moreover, this analytical-numerical approach was employed to generate and analyze vaccination strategy scenarios under various conditions and model parameters.

 

Keywords: SEIR COVID-19 mathematical model, the Adomian decomposition method, multi-step methodology, simulation, vaccinated population.

 

https://doi.org/10.55463/issn.1674-2974.51.5.10


Full Text:

PDF


References


AYORA-TALAVERA G., GRANJA-PEREZ P., SAURI-VIVAS M., HERNÁNDEZ-FUENTES C. I., HENNESSEE I. P., LÓPEZ-MARTÍNEZ I., BARRERA-BADILLO G., CHE-MENDOZA A., MANRIQUE-SAIDE P., CLENNON J. A., and GÓMEZ-DANTÉS H. Impact of layered non-pharmacological interventions on COVID-19 transmission dynamics in Yucatan, Mexico. Preventive Medicine Reports, 2022, 28: 101843. https://doi.org/10.1016/j.pmedr.2022.101843

PATÓN M., AL-HOSANI F., STANCIOLE A. E., ADEN B., TIMOSHKIN A., SADANI A., NAJIM O., CHERIAN C. A., ACUÑA J. M., and RODRÍGUEZ J. Model-based evaluation of the COVID-19 epidemiological impact on international visitors during Expo 2020. Infectious Disease Modelling, 2022, 7(3): 571-579. https://doi.org/10.1016/j.idm.2022.08.003

ABIDEMI A., AKANNI J. O., and MAKINDE O. D. A non-linear mathematical model for analysing the impact of COVID-19 disease on higher education in developing countries. Healthcare Analytics, 2023, 3: 100193. https://doi.org/10.1016/j.health.2023.100193

CALVETTI D., & SOMERSALO E. Post-pandemic modeling of COVID-19: Waning immunity determines recurrence frequency. Mathematical Biosciences, 2023, 365: 109067. https://doi.org/10.1016/j.mbs.2023.109067

CORDOVA-VILLALOBOS J. A., MACIAS A. E., HERNANDEZ-AVILA M., DOMINGUEZ-CHERIT G., LOPEZ-GATELL H., ALPUCHE-ARANDA C., and DE LEÓN-ROSALES S. P. The 2009 pandemic in Mexico: Experience and lessons regarding national preparedness policies for seasonal and epidemic influenza. Gaceta Médica de México, 2017, 153(1): 102–110. https://doi.org/10.14419/ijamr.v2i4.871

HA K. M. A lesson learned from the MERS outbreak in South Korea in 2015. Journal of Hospital Infection, 2016, 92(3): 232-234. https://doi.org/10.1016/j.jhin.2015.10.004

HOFFMAN S. J., & SILVERBERG S. L. Delays in global disease outbreak responses: lessons from H1N1, Ebola, and Zika. American Journal of Public Health, 2018, 108(3): 329-333. https://doi.org/10.2105/AJPH.2017.304245

YANG L., FAN M., WANG Y., SUN X., and ZHU H. Effect of avian influenza scare on transmission of zoonotic avian influenza: A case study of influenza A (H7N9). Mathematical Biosciences, 2024, 367: 109125. https://doi.org/10.1016/j.mbs.2023.109125

GADIYAR I., & DOBROVOLNY H. M. Different routes of infection of H5N1 lead to changes in infecting time. Mathematical Biosciences, 2024, 367: 109129. https://doi.org/10.1016/j.mbs.2023.109129

AMIDEI A., & DOBROVOLNY H. M. Virus-mediated cell fusion of SARS-CoV-2 variants. Mathematical Biosciences, 2024, 369: 109144. https://doi.org/10.1016/j.mbs.2024.109144

ALKHATEEB N., SALLABI F., HAROUS S., and AWAD M. A Study on Predicting the Outbreak of COVID-19 in the United Arab Emirates: A Monte Carlo Simulation Approach. Mathematics, 2022, 10(23): 4434. https://doi.org/10.3390/math10234434

TAGHIZADEH E., & MOHAMMAD-DJAFARI A. SEIR modeling, simulation, parameter estimation, and their application for COVID-19 epidemic prediction. Physical Sciences Forum, 2022, 5(1): 18. https://doi.org/10.3390/psf2022005018

MEGAN S. How Iceland hammered COVID with science. Nature, 2020, 587: 536–539. https://doi.org/10.1038/ d41586-020-03284-3

SALDAA F., & VELASCO-HERNANDEZ J. The trade-off between mobility and vaccination for COVID-19 control: a metapopulation modelling approach. Royal Society Open Science, 2021, 8(6): 202240. https://doi.org/10.1098/rsos.202240

CALLAWAY E. What Pfizer’s landmark COVID vaccine results mean for the pandemic. Nature, 2020. https://doi.org/10.1038/d41586-020-03166-8

MALLAPATY S., & CALLAWAY E. What scientists do and don’t know about the Oxford–AstraZeneca COVID vaccine. Nature, 2021, 592: 15–17. https://doi.org/10.1038/d41586-021-00785-7

FOUDA A., MAHMOUDI N., MOY N., and PAOLUCCI F. The COVID-19 pandemic in Greece, Iceland, New Zealand, and Singapore: Health policies and lessons learned. Health Policy and Technology, 2020, 9(4): 510-524. https://doi.org/10.1016/j.hlpt.2020.08.015

ZUO C., LING Y., ZHU F., MA X., and XIANG G. Exploring epidemic voluntary vaccinating behavior based on information-driven decisions and benefit-cost analysis. Applied Mathematics and Computation, 2023, 447: 127905. https://doi.org/10.1016/j.amc.2023.127905

MWALILI S., KIMATHI M., OJIAMBO V., GATHUNGU D., and MBOGO R. SEIR model for COVID-19 dynamics incorporating the environment and social distancing. BMC Research Notes, 2020, 13(1): 352. https://doi.org/10.1186/s13104-020-05192-1

CAPISTRAN M. A., CAPELLA A., and CHRISTEN J. A. Forecasting hospital demand in metropolitan areas during the current COVID-19 pandemic and estimates of lockdown-induced 2nd waves. PLoS ONE, 2021, 16(1): e0245669. https://doi.org/10.1371/journal.pone.0245669

AL-MDALLAL Q. M. Mathematical modeling and simulation of SEIR model for COVID-19 outbreak: A case study of trivandrum. Frontiers in Applied Mathematics and Statistics, 2023, 9: 1124897. https://doi.org/10.3389/fams.2023.1124897

DAZA-TORRES M. L., CAPISTRAN M., CAPELLA A., and CHRISTEN J. Bayesian sequential data assimilation for COVID-19 forecasting. Epidemics, 2022, 39: 100564. https://doi.org/10.1016/j.epidem.2022.100564

KHELIFA S., & CHERRUAULT Y. New results for the Adomian method. Kybernetes, 2000, 29(3): 332–355. https://doi.org/10.1108/03684920010795303

CHEN W., & LU Z. An algorithm for Adomian decomposition method. Applied Mathematics and Computation, 2004, 159(1): 221–235. https://doi.org/10.1016/j.amc.2003.10.037

BLANCO-COCOM L., & AVILA-VALES E. The use of the Adomian method for a SIRC influenza model. Advances in Differential Equations and Control Processes, 2010, 5(2): 115-127. http://www.pphmj.com/abstract/5026.htm

BLANCO-COCOM L., ESTRELLA A. G., and AVILA-VALES E. Solving delay differential systems with history functions by the Adomian decomposition method. Applied Mathematics and Computation, 2012, 218(10): 5994–6011. https://doi.org/10.1016/j.amc.2011.11.082

BLANCO-COCOM L., ESTRELLA A. G., and AVILA-VALES E. Solution of the Black-Scholes equation via the Adomian decomposition method. International Journal of Applied Mathematical Research, 2013, 2(4): 486–494. https://doi.org/10.14419/ijamr.v2i4.871

ABBAOUI K., CHERRUAULT Y., and SENG V. Practical formulae for the calculus of multivariable Adomian polynomials. Mathematical and Computer Modelling, 1995, 22(1): 89–93. https://doi.org/10.1016/0895-7177(95)00103-9

DUAN J. S. Convenient analytic recurrence algorithms for the Adomian polynomials. Applied Mathematics and Computation, 2011, 217(13): 6337–6348. https://doi.org/10.1016/j.amc.2011.01.007

ABBAOUI K., & CHERRUAULT Y. New ideas for proving convergence of decomposition methods. Computers & Mathematics with Applications, 1995, 29(7): 103–108. https://doi.org/10.1016/0898-1221(95)00022-Q

REPACI A. Nonlinear dynamical systems: On the accuracy of Adomian’s decomposition method. Applied Mathematics Letters, 1990, 3(4): 35–39. https://doi.org/10.1016/0893-9659(90)90042-A

OLEK S. An Accurate Solution to the Multispecies Lotka-Volterra Equations. SIAM Review, 1994, 36(3): 480–488. https://doi.org/10.1137/1036104

CHU H., ZHAO Y., and LIU Y. A MAPLE package of new ADM-Padé approximate solution for nonlinear problems. Applied Mathematics and Computation, 2011, 217(17): 7074–7091. https://doi.org/10.1016/j.amc.2010.12.085

RUAN J., & LU Z. A modified algorithm for the Adomian decomposition method with applications to Lotka-Volterra systems. Mathematical and Computer Modelling, 2007, 46(9): 1214–1224. https://doi.org/10.1016/j.mcm.2006.12.038

ABBAS Y., ANN J., and MERNA A. A multistage Adomian decomposition method for solving the autonomous van der Pol system. Australian Journal of Basic and Applied Sciences, 2009, 3(4): 4397–4407. https://ajbasweb.com/old/ajbas/2009/4397-4407.pdf


Refbacks

  • There are currently no refbacks.