Comparative Analysis of the IoT Architectures for Smart Agriculture: Methodological Study Using the AHP and COPRAS
Abstract
Global population growth, coupled with the depletion of natural resources and agricultural land and the increasing unpredictability of environmental conditions, has raised significant concerns regarding food security worldwide. These challenges have prompted the adoption of smart farming practices in the agricultural sector, leveraging the internet of things (IoT) and big data solutions to enhance operational efficiency and productivity. The IoT encompasses various advanced technologies such as wireless sensor networks, self-organizing cognitive radio networks, cloud computing, big data analytics, and end-user applications. This article presents a comparative study using multi-criteria analysis to evaluate different proposed architectures for the IoT technology-based smart agriculture. To find the best architecture based on predetermined criteria, this study uses the analytic hierarchy process (AHP) and complex proportional assessment (COPRAS) techniques. By employing these decision-making methodologies, this research contributes to the selection and optimization of IoT-based solutions for smart agriculture, thereby addressing the imperative need for sustainable and efficient food production systems.
Keywords: smart farming, the internet of things, complex proportional assessment, analytic hierarchy process.
Full Text:
PDFReferences
DALENS T. Learnable factored image representations for visual discovery. Doctoral thesis, Ecole Normale Superieure de Paris-ENS Paris, 2019. https://inria.hal.science/tel-02296150/
TRENDOV N. M., VARAS S., and ZENG M. Digital technologies in agriculture and rural areas – Status report. Food and Agriculture Organization of the United Nations, Rome, 2019. https://openknowledge.fao.org/server/api/core/bitstreams/0bb5137a-161c-4b7c-9257-3d4d5251b4bf/content
RAY P. P. Internet of things for smart agriculture: Technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments, 2017, 9(4): 395-420. https://doi.org/10.3233/AIS-170440
DEEPA B., ANUSHA C., and CHAYA DEVI P. Smart Agriculture Using IOT. In: SATAPATHY S., BHATEJA V., JANAKIRAMAIAH B., and CHEN Y. W. (eds.) Intelligent System Design. Advances in Intelligent Systems and Computing, Vol. 1171. Springer, Singapore, 2021: 11–19. https://doi.org/10.1007/978-981-15-5400-1_2
SENTHIL KUMAR A., SURESH G., LEKASHRI S., BABU LOGANATHAN G., and MANIKANDAN R. Smart Agriculture System with E–Carbage Using IoT. International Journal of Modern Agriculture, 2021, 10(1): 928-931. http://www.modern-journals.com/index.php/ijma/article/view/690
SEKARAN K., MEQDAD M. N., KUMAR P., RAJAN S., and KADRY S. Smart agriculture management system using internet of things. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2020, 18(3): 1275-1284. https://doi.org/10.12928/telkomnika.v18i3.14029
SRILAKSHMI A., RAKKINI J., SEKAR K. R., and MANIKANDAN R. A comparative study on Internet of Things (IoT) and its applications in smart agriculture. Pharmacognosy Journal, 2018, 10(2): 260-264. https://doi.org/10.5530/pj.2018.2.46
SARANYA T., DEISY C., SRIDEVI S., and ANBANANTHEN K. S. M. A comparative study of deep learning and Internet of Things for precision agriculture. Engineering Applications of Artificial Intelligence, 2023, 122: 106034. https://doi.org/10.1016/j.engappai.2023.106034
DAWSON T. P., PERRYMAN A. H., and OSBORNE T. M. Modelling impacts of climate change on global food security. Climatic Change, 2016, 134: 429-440. https://doi.org/10.1007/s10584-014-1277-y
SINHA B. B., & DHANALAKSHMI R. Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Generation Computer Systems, 2022, 126: 169-184. https://doi.org/10.1016/j.future.2021.08.006
BOURSIANIS A. D., PAPADOPOULOU M. S., DIAMANTOULAKIS P., LIOPA-TSAKALIDI A., BAROUCHAS P., SALAHAS G., KARAGIANNIDIS G., WAN S., and GOUDOS S. K. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things, 2022, 18: 100187. https://doi.org/10.1016/j.iot.2020.100187
HASAN M. Real-time and low-cost IoT based farming using raspberry Pi. Indonesian Journal of Electrical Engineering and Computer Science, 2020, 17(1): 197-204. http://doi.org/10.11591/ijeecs.v17.i1.pp197-204
PRIYADHARSHINI M. J. G., HARIHARASUDHAN B., NEELAKANDAN R., and ARVIND R. K. Review on IoT based smart agriculture monitoring system. International Journal of Research and Analytical Reviews, 2022, 9(2): 38-43. https://ijrar.org/papers/IJRAR1COP007.pdf
DEBAUCHE O., MAHMOUDI S., and GUTTADAURIA A. A new edge computing architecture for IoT and multimedia data management. Information, 2022, 13(2): 89. https://doi.org/10.3390/info13020089
GIA T. N., QINGQING L., QUERALTA J. P., ZOU Z., TENHUNEN H., and WESTERLUND T. Edge AI in smart farming IoT: CNNs at the edge and fog computing with LoRa. Proceedings of the IEEE AFRICON, Accra, 2019, pp. 1-6. https://doi.org/10.1109/africon46755.2019.9134049
DAHANE A., BENAMEUR R., KECHAR B., and BENYAMINA A. An IoT based smart farming system using machine learning. Proceedings of the International Symposium on Networks, Computers and Communications, Montreal, 2020, pp. 1-6. https://doi.org/10.1109/isncc49221.2020.9297341
PÉREZ-PONS M. E., ALONSO R. S., PARRA-DOMÍNGUEZ J., PLAZA-HERNÁNDEZ M., and TRABELSI S. An Edge-IoT Architecture and Regression Techniques Applied to an Agriculture Industry Scenario. In: CORCHADO J. M., & TRABELSI S. (eds.) Sustainable Smart Cities and Territories. SSCTIC 2021. Lecture Notes in Networks and Systems, Vol. 253. Springer, Cham, 2022: 92–102. https://doi.org/10.1007/978-3-030-78901-5_9
ROUKH A., FOTE F. N., MAHMOUDI S. A., and MAHMOUDI S. Big data processing architecture for smart farming. Procedia Computer Science, 2020, 177: 78-85. https://doi.org/10.1016/j.procs.2020.10.014
KAKAMOUKAS G., SARICIANNIDIS P., LIVANOS G., ZERVAKIS M., RAMNALIS D., POLYCHRONOS V., KARAMITSOU T., FOLINAS A., and TSITSIOKAS N. A multi-collective, IoT-enabled, adaptive smart farming architecture. Proceedings of the IEEE International Conference on Imaging Systems and Techniques, Abu Dhabi, 2019, pp. 1-6. https://doi.org/10.1109/ist48021.2019.9010236
ZAMORA-IZQUIERDO M. A., SANTA J., MARTÍNEZ J. A., MARTÍNEZ V., and SKARMETA A. F. Smart farming IoT platform based on edge and cloud computing. Biosystems Engineering, 2019, 177: 4-17. https://doi.org/10.1016/j.biosystemseng.2018.10.014
TRIANTAFYLLOU A., TSOUROS D. C., SARIGIANNIDIS P., and BIBI S. An architecture model for smart farming. Proceedings of the 15th International Conference on Distributed Computing in Sensor Systems, Santorini, 2019, pp. 385-392. https://doi.org/10.1109/dcoss.2019.00081
ALONSO R. S., SITTÓN-CANDANEDO I., CASADO-VARA R., PRIETO J., and CORCHADO J. M. Deep reinforcement learning for the management of software-defined networks in smart farming. Proceedings of the International Conference on Omni-Layer Intelligent Systems, Barcelona, 2020, pp. 1-6. https://doi.org/10.1109/coins49042.2020.9191634
TRILLES S., GONZÁLEZ-PÉREZ A., and HUERTA J. An IoT platform based on microservices and serverless paradigms for smart farming purposes. Sensors, 2020, 20(8): 2418. https://doi.org/10.3390/s20082418
FAID A., SADIK M., and SABIR E. IoT-based low cost architecture for smart farming. Proceedings of the International Wireless Communications and Mobile Computing, Limassol, 2020, pp. 1296-1302. https://doi.org/10.1109/iwcmc48107.2020.9148455
SAATY T. L. Fundamentals of the Analytic Hierarchy Process. In: SCHMOLDT D. L., KANGAS J., MENDOZA G. A., and PESONEN M. (eds.) The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making. Managing Forest Ecosystems, Vol. 3. Springer, Dordrecht, 2001: 15–35. https://doi.org/10.1007/978-94-015-9799-9_2
DARKO A., CHAN A. P. C., AMEYAW E. E., OWUSU E. K., PÄRN E., and EDWARDS D. J. Review of application of analytic hierarchy process (AHP) in construction. International Journal of Construction Management, 2019, 19(5): 436-452. https://doi.org/10.1080/15623599.2018.1452098
KAKLAUSKAS A., ZAVADSKAS E. K., RASLANAS S., GINEVICIUS R., KOMKA A., and MALINAUSKAS P. Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: A Lithuanian case. Energy and Buildings, 2006, 38(5): 454-462. https://doi.org/10.1016/j.enbuild.2005.08.005
BAKHOUYI A., DEHBI R., and TALEA M. Multiple criteria comparative evaluation on the interoperability of LMS by applying COPRAS method. Proceedings of the Future Technologies Conference, San Francisco, California, 2016, pp. 361-366. https://doi.org/10.1109/ftc.2016.7821635
DEHBI A., BAKHOUYI A., DEHBI R., and TALEA M. MOOCs in smart education: Comparative study by applying AHP and COPRAS method. International Journal of Emerging Technologies in Learning, 2022, 17(8): 61-74. https://doi.org/10.3991/ijet.v17i08.27871
ALINEZHAD A., & KHALILI J. New methods and applications in multiple attribute decision making (MADM). Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-15009-9
Refbacks
- There are currently no refbacks.