Quantifying CO2-H2S Interaction in Near-Wellbore Environments: A Geochemical Perspective

Ahmad Amirhilmi A. Razak, Ismail M. Saaid, Muhammad Aslam Md. Yusof, M. Fakrumie Zaidin, Farhana Jaafar Azuddin, Sahriza Salwani Md Shah, Norshida Mohsin, Sharidah M. Amin, Yong Wen Pin, Wan Mohd Shaharizuan Mat Latif

Abstract

This paper presents the findings of experiments conducted to study the geochemistry of carbon dioxide (CO2) and hydrogen sulfide (H2S) in near-wellbore environments during geological carbon sequestration (GCS). The interactions of CO2 and H2S with carbonate rock can result in carbonation, sulfidation, acidification, and mineral precipitation reactions. These chemical reactions can lead to the dissolution of carbonate rock, release of calcium or magnesium ions, formation of sulfides, and precipitation of minerals such as sulfates and carbonates. These complex reactions have significant implications for the properties and integrity of the rock, especially in the context of CO2 or natural gas storage with impurities like H2S, affecting the long-term stability and containment of these fluids. The results indicate that the aging process had limited effects on the porosity and permeability of the carbonate samples, except for the condition with 250-ppm H2S concentration. X-ray diffraction (XRD) analysis revealed that the dominant mineral composition remained relatively unchanged, while the presence of H2S promoted the formation or retention of clay minerals. Computed topography (CT) scan analysis showed varying effects on the average CT value, with higher H2S concentrations resulting in more pronounced changes, indicating greater reaction or alteration. Inductively coupled plasma (ICP) analysis demonstrated the release of cations and anions, dissolution of minerals, production of bicarbonate, calcite, and magnesium, and reduction in sulfate ions. These findings provide valuable insights into the behavior and stability of carbonate rocks in near-wellbore environments under CO2-H2S interactions. Understanding these complex geochemical processes is crucial for assessing the long-term stability and containment of CO2 or natural gas with impurities like H2S in geological storage scenarios.

 

Keywords: geochemistry, hydrogen sulfide, geological carbon sequestration, X-ray diffraction, computed topography scan.

 

https://doi.org/10.55463/issn.1674-2974.51.4.7


Full Text:

PDF


References


YU X., CATANESCU C. O., BIRD R. E., SATAGOPAN S., BAUM Z. J., LOTTI DIAZ L. M., and ZHOU Q. A. Trends in research and development for CO2 capture and sequestration. ACS Omega, 2023, 8(13): 11643-11664. https://doi.org/10.1021/acsomega.2c05070

ZHANG Y., JACKSON C., and KREVOR S. An Estimate of the Amount of Geological CO2 Storage over the Period of 1996–2020. Environmental Science & Technology Letters, 2022, 9(8): 693-698. https://doi.org/10.1021/acs.estlett.2c00296

LI J., HOU Y., WANG P., and YANG B. A review of carbon capture and storage project investment and operational decision-making based on bibliometrics. Energies, 2018, 12(1): 23. https://doi.org/10.3390/en12010023

MD YUSOF M. A., MOHAMED M. A., MD AKHIR N. A., IBRAHIM M. A., SAAID I. M., IDRIS A. K., IDRESS M., and AWANGKU MATALI A. A. A. Influence of Brine–Rock Parameters on Rock Physical Changes during CO2 Sequestration in Saline Aquifer. Arabian Journal for Science and Engineering, 2022, 47(9): 11345-11359. https://doi.org/10.1007/s13369-021-06110-8

MD YUSOF M. A., IBRAHIM M. A., IDRESS M., IDRIS A. K., SAAID I. M., ROSDI N. M., MOHSIN M. S., and MATALI A. A. A. A. Effects of CO2/rock/formation brine parameters on CO2 injectivity for sequestration. SPE Journal, 2021, 26(3): 1455-1468. https://doi.org/10.4043/30157-ms

LI D., ZHANG H., LI Y., XU W., and JIANG X. Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation–A sensitivity study. Applied Energy, 2018, 229: 482-492. https://doi.org/10.1016/j.apenergy.2018.07.083

TSOURIS C., AARON D. S., and WILLIAMS K. A. Is Carbon Capture and Storage Really Needed? Environmental Science & Technology, 2010, 44(11): 4042–4045. https://doi.org/10.1021/es903626u

BACHU S. Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control, 2015, 40: 188-202. https://doi.org/10.1016/j.ijggc.2015.01.007

ZHANG D., & SONG J. Mechanisms for geological carbon sequestration. Procedia IUTAM, 2014, 10: 319-327. https://doi.org/10.1016/j.piutam.2014.01.027

WANG J., RYAN D., ANTHONY E. J., WILDGUST N., and AIKEN T. Effects of impurities on CO2 transport, injection and storage. Energy Procedia, 2011, 4: 3071-3078. https://doi.org/10.1016/j.egypro.2011.02.219

RAZAK A. A. A., SAAID I. M., MD. YUSOF M. A., HUSEIN N., ZAIDIN M. F., and SABIL K. M. Physical and chemical effect of impurities in carbon capture, utilisation and storage. Journal of Petroleum Exploration and Production Technology, 2023, 13(5): 1235-1246. https://doi.org/10.1007/s13202-023-01616-3

LI C., ZHANG F., LYU C., HAO J., SONG J., and ZHANG S. Effects of H2S injection on the CO2-brine-sandstone interaction under 21 MPa and 70°C. Marine Pollution Bulletin, 2016, 106(1-2): 17-24. https://doi.org/10.1016/j.marpolbul.2016.03.053

ZAIDIN M. F., CHAPOY A., COQUELET C., VALTZ A., RAUB M. R. A., and KANTAATMADJA B. P. Impact of H2S in Predicting the Storage Efficiency of CO2 Injection in a High Pressure High Temperature (HPHT) Carbonate Aquifer - A Case Study in a Sarawak Offshore High CO2 Gas Field, Malaysia. Proceedings of the 14th Greenhouse Gas Control Technologies Conference, Melbourne, 2018. http://dx.doi.org/10.2139/ssrn.3366049

WANG J., RYAN D., ANTHONY E. J., WIGSTON A., BASAVA-REDDI L., and WILDGUST N. The effect of impurities in oxyfuel flue gas on CO2 storage capacity. International Journal of Greenhouse Gas Control, 2012, 11: 158-162. https://doi.org/10.1016/j.ijggc.2012.08.002

KNAUSS K. G., JOHNSON J. W., and STEEFEL C. I. Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2. Chemical Geology, 2005, 217(3-4): 339-350. https://doi.org/10.1016/j.chemgeo.2004.12.017

SCHOLES C. A., KENTISH S. E., and STEVENS G. W. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes. Separation & Purification Reviews, 2009, 38(1): 1-44. https://doi.org/10.1080/15422110802411442

YU Y., LI Y., CHENG F., YANG G., MA X., and CAO W. Effects of impurities H2S and N2 on CO2 migration and dissolution in sedimentary geothermal reservoirs. Journal of Hydrology, 2021, 603: 126959. https://doi.org/10.1016/j.jhydrol.2021.126959

ZHANG W., XU T., and LI Y. Modeling of fate and transport of coinjection of H2S with CO2 in deep saline formations. Journal of Geophysical Research: Solid Earth, 2011, 116(B2): B02202. https://doi.org/10.1029/2010JB007652

RAZAK A. A. A., SAAID I. M., YUSOF M. A. M., ZAIDIN M. F., ZULKARNAIN N. N., AMIR M. I. M., SAZALI Y. A., and HABARUDIN M. F. Quantifying the Influence of H2S Impurities on CO2 Storage Efficiency in Carbonate Reservoirs: An Experimental Findings. Proceedings of the International Petroleum Technology Conference, Dhahran, 2024, IPTC-23945-MS. https://doi.org/10.2523/IPTC-23945-MS

ZAIDIN M. F., RAZAK A. A., ABDULLAH W. S., and TEWARI R. D. Assessing the Impact of CO2-H2S at 400 ppm for Storage: A Geochemistry Perspective. Proceedings of the ADIPEC, Abu Dhabi, 2023, SPE-216740-MS. https://doi.org/10.2118/216740-MS

LABUS K., & SUCHODOLSKA K. Predicting the interactions of H2S-CO2 mixtures with aquifer rock, based on experiments and geochemical modeling. Procedia Earth and Planetary Science, 2017, 17: 288-291. https://doi.org/10.1016/j.proeps.2016.12.059

CLARK D. E., GUNNARSSON I., ARADÓTTIR E. S., ARNARSON M. Þ., ÞORGEIRSSON Þ. A., SIGURÐARDÓTTIR S. S., SIGFÚSSON B., SNÆBJÖRNSDÓTTIR S. Ó., OELKERS E. H., and GÍSLASON S. R. The chemistry and potential reactivity of the CO2-H2S charged injected waters at the basaltic CarbFix2 site, Iceland. Energy Procedia, 2018, 146: 121-128. https://doi.org/10.1016/j.egypro.2018.07.016

ABDUL AZIZ M. F., & MITHANI A. H. Holistic Approach in Managing Challenges of Mature Offshore Carbonate Gas Fields with High CO2 and H2S Content in Sarawak Gas Operations, Malaysia. Proceedings of the SPE Oil and Gas India Conference and Exhibition, Mumbai, 2017, SPE-185363-MS. https://doi.org/10.2118/185363-ms

SNÆBJÖRNSDÓTTIR S. Ó., SIGFÚSSON B., MARIENI C., GOLDBERG D., GISLASON S. R., and OELKERS E. H. Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, 2020, 1(2): 90-102. https://doi.org/10.1038/s43017-019-0011-8

DELERCE S., MARIENI C., and OELKERS E. H. Carbonate geochemistry and its role in geologic carbon storage. In: WANG Q. (ed.) Surface Process, Transportation, and Storage: Volume 4 in Oil and Gas Chemistry Management Series. Elsevier, 2023: 423-477. https://doi.org/10.1016/b978-0-12-823891-2.00001-6

MACKENZIE F. T. Carbonate mineralogy and geochemistry. In: MIDDLETON G. V., CHURCH M. J., CONIGLIO M., HARDIE L. A., and LONGSTAFFE F. J. (eds.) Encyclopedia of Sediments and Sedimentary Rocks. Encyclopedia of Earth Sciences Series. Springer, Dordrecht, 1978: 93–100. https://doi.org/10.1007/978-1-4020-3609-5_35


Refbacks

  • There are currently no refbacks.