Mobile Edge Computing in Smart Healthcare: A Comprehensive Review, Challenges and Future Directions

Muhammad Ayaz, Zubair Sharif, Yussri M. Mahrous, Fares Almehmadi

Abstract

Mobile Edge Computing (MEC) is a distributed computing paradigm that brings computational resources closer to the edge of the network, enabling faster processing and low-latency interactions for applications and services. This computing paradigm is crucial for many applications, including intelligent healthcare systems, where it allows for the rapid analysis of healthcare data at the edge, supporting prompt and effective health-related services, remote patient monitoring, and personalized medicine. In this paper, we aim to comprehensively review MEC applications in the context of smart healthcare systems. The primary focus is on the integration of MEC technology as a pivotal solution to address the growing demand for efficient and real-time healthcare services. To highlight the purpose and novelty of this research, we delve into the current status of MEC in healthcare, examining both the significant challenges and opportunities in this domain. Challenges, including latency, security, and scalability, are discussed, providing insights into the complexities of implementing MEC in healthcare. Notably, our paper contributes by providing research directions to address these challenges, thereby unlocking the full potential of MEC, hence offering a roadmap for future advancements for smart healthcare systems.

 

Keywords: mobile edge computing, smart healthcare, network.

 

https://doi.org/10.55463/issn.1674-2974.51.2.2


Full Text:

PDF


References


RAUNIYAR A., HAGOS D. H., JHA D., HÅKEGÅRD J. E., BAGCI U., RAWAT D. B., and VLASSOV V. Federated learning for medical applications: A taxonomy, current trends, challenges, and future research directions. IEEE Internet of Things Journal, 2024, 11(5): 7374-7398. https://doi.org/10.1109/JIOT.2023.3329061

WALIA G. K., KUMAR M., and GILL S. S. AI-empowered fog/edge resource management for IoT applications: A comprehensive review, research challenges, and future perspectives. IEEE Communications Surveys & Tutorials, 2024, 26(1): 619-669. https://doi.org/10.1109/COMST.2023.3338015

AMINIZADEH S., HEIDARI A., TOUMAJ S., DARBANDI M., NAVIMIPOUR N. J., REZAEI M., TALEBI S., AZAD P., and UNAL M. The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things. Computer Methods and Programs in Biomedicine, 2023, 241: 107745. https://doi.org/10.1016/j.cmpb.2023.107745

AHMED S. F., ALAM M. S. B., AFRIN S., RAFA S. J., RAFA N., and GANDOMI A. H. Insights into Internet of Medical Things (IoMT): Data fusion, security issues and potential solutions. Information Fusion, 2024, 102: 102060. https://doi.org/10.1016/j.inffus.2023.102060

ALI A., AL-RIMY B. A. S., ALSUBAEI F. S., ALMAZROI A. A., and ALMAZROI A. A. HealthLock: Blockchain-Based Privacy Preservation Using Homomorphic Encryption in Internet of Things Healthcare Applications. Sensors, 2023, 23(15): 6762. https://doi.org/10.3390/s23156762

HOSSAIN M. R., WHAIDUZZAMAN M., BARROS A., TULY S. R., MAHI M. J., ROY S., FIDGE C., and BUYYA R. A scheduling-based dynamic fog computing framework for augmenting resource utilization. Simulation Modelling Practice and Theory, 2021, 111: 102336. https://doi.org/10.1016/j.simpat.2021.102336

MANIKANDAN R., PATAN R., GANDOMI A. H., SIVANESAN P., and KALYANARAMAN H. Hash polynomial two factor decision tree using IoT for smart health care scheduling. Expert Systems with Applications, 2020, 141: 112924. https://doi.org/10.1016/j.eswa.2019.112924

NING Z., DONG P., WANG X., HU X., GUO L., HU B., GUO Y., QIU T., and KWOK R. Y. Mobile Edge Computing Enabled 5G Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach. IEEE Journal on Selected Areas in Communications, 2020, 39(2): 463-478. https://doi.org/10.1109/JSAC.2020.3020645

PACE P., ALOI G., GRAVINA R., CALICIURI G., FORTINO G., and LIOTTA A. An Edge-Based Architecture to Support Efficient Applications for Healthcare Industry 4.0. IEEE Transactions on Industrial Informatics, 2018, 15(1): 481-489. https://doi.org/10.1109/TII.2018.2843169

VERMA P., & SOOD S. K. Fog assisted-IoT enabled patient health monitoring in smart homes. IEEE Internet of Things Journal, 2018, 5(3): 1789-1796. https://doi.org/10.1109/JIOT.2018.2803201

JAZAERI S. S., ASGHARI P., JABBEHDARI S., and JAVADI H. H. S. Toward caching techniques in edge computing over SDN-IoT architecture: A review of challenges, solutions, and open issues. Multimedia Tools and Applications, 2024, 83(1): 1311-1377. https://doi.org/10.1007/s11042-023-15657-7

SIRISHA G., & REDDY A. M. Smart healthcare analysis and therapy for voice disorder using cloud and edge computing. Proceedings of the 4th International Conference on Applied and Theoretical Computing and Communication Technology, Mangalore, 2018, pp. 103-106. https://doi.org/10.1109/iCATccT44854.2018.9001280

PAUL A., PINJARI H., HONG W. H., SEO H. C., and RHO S. Fog computing-based IoT for health monitoring system. Journal of Sensors, 2018, 2018: 1386470. https://doi.org/10.1155/2018/1386470

TULI S., BASUMATARY N., GILL S. S., KAHANI M., ARYA R. C., WANDER G. S., and BUYYA R. HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future Generation Computer Systems, 2020, 104: 187-200. https://doi.org/10.1016/j.future.2019.10.043

OUEIDA S., KOTB Y., ALOQAILY M., JARARWEH Y., and BAKER T. An edge computing based smart healthcare framework for resource management. Sensors, 2018, 18(12): 4307. https://doi.org/10.3390/s18124307

SEBILLO M., TORTORA G., TUCCI M., VITIELLO G., GINIGE A., and DI GIOVANNI P. Combining personal diaries with territorial intelligence to empower diabetic patients. Journal of Visual Languages & Computing, 2015, 29: 1-14. https://doi.org/10.1016/j.jvlc.2015.03.002

MIAH S. J., HASAN J., and GAMMACK J. G. On-cloud healthcare clinic: an e-health consultancy approach for remote communities in a developing country. Telematics and Informatics, 2017, 34(1): 311-322. https://doi.org/10.1016/j.tele.2016.05.008

CHEN Y., HAN S., CHEN G., YIN J., WANG K. N., and CAO J. A deep reinforcement learning-based wireless body area network offloading optimization strategy for healthcare services. Health Information Science and Systems, 2023, 11(1): 8. https://doi.org/10.1007/s13755-023-00212-3

RAJ P., SAINI K., and SURIANARAYANAN C. Edge/Fog Computing Paradigm: The Concept, Platforms and Applications, Vol. 127. Academic Press, 2022. https://www.sciencedirect.com/bookseries/advances-in-computers/vol/127/suppl/C

LI X., & DA XU L. A Review of Internet of Things—Resource Allocation. IEEE Internet of Things Journal, 2020, 8(11): 8657-8666. https://doi.org/10.1109/JIOT.2020.3035542

SHARIF Z., JUNG L. T., AYAZ M., YAHYA M., and PITAFI S. Priority-based task scheduling and resource allocation in edge computing for health monitoring system. Journal of King Saud University - Computer and Information Sciences, 2023, 35(2): 544-559. https://doi.org/10.1016/j.jksuci.2023.01.001

SHUKLA S., HASSAN M. F., TRAN D. C., AKBAR R., PAPUTUNGAN I. V., and KHAN M. K. Improving latency in Internet-of-Things and cloud computing for real-time data transmission: a systematic literature review (SLR). Cluster Computing, 2023, 26: 2657–2680. https://doi.org/10.1007/s10586-021-03279-3

REN J., YU G., CAI Y., and HE Y. Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 2018, 17(8): 5506-5519. https://doi.org/10.1109/TWC.2018.2845360

NGUYEN D. T., LE L. B., and BHARGAVA V. Price-based resource allocation for edge computing: A market equilibrium approach. IEEE Transactions on Cloud Computing, 2018, 9(1): 302-317. https://doi.org/10.1109/TCC.2018.2844379

RAFIQUE H., SHAH M. A., ISLAM S. U., MAQSOOD T., KHAN S., and MAPLE C. A novel bio-inspired hybrid algorithm (NBIHA) for efficient resource management in fog computing. IEEE Access, 2019, 7: 115760-115773. https://doi.org/10.1109/ACCESS.2019.2924958

SHAKARAMI A., SHAHIDINEJAD A., and GHOBAEI-ARANI M. An autonomous computation offloading strategy in Mobile Edge Computing: A deep learning-based hybrid approach. Journal of Network and Computer Applications, 2021, 178: 102974. https://doi.org/10.1016/j.jnca.2021.102974

MAHMOUD M. M., RODRIGUES J. J., AHMED S. H., SHAH S. C., AL-MUHTADI J. F., KOROTAEV V. V., and DE ALBUQUERQUE V. H. C. Enabling technologies on cloud of things for smart healthcare. IEEE Access, 2018, 6: 31950-31967. https://doi.org/10.1109/ACCESS.2018.2845399

AMMAD-UDIN M., MANSOUR A., LE JEUNE D., AGGOUNE E. H. M., and AYAZ M. UAV routing protocol for crop health management. Proceedings of the 24th European Signal Processing Conference, Budapest, 2016, pp. 1818-1822. https://doi.org/10.1109/EUSIPCO.2016.7760562

ABDELNAPI N. M. M., OMRAN N. F., ALI A. A., and OMARA F. A. A survey of internet of things technologies and projects for healthcare services. Proceedings of the International Conference on Innovative Trends in Computer Engineering, Aswan, 2018, pp. 48-55. https://doi.org/10.1109/ITCE.2018.8316599

AUN N. F. M., SOH P. J., AL-HADI A. A., JAMLOS M. F., VANDENBOSCH G. A., and SCHREURS D. Revolutionizing wearables for 5G: 5G technologies: Recent developments and future perspectives for wearable devices and antennas. IEEE Microwave Magazine, 2017, 18(3): 108-124. https://doi.org/10.1109/MMM.2017.2664019

VARSHNEY U. Pervasive healthcare and wireless health monitoring. Mobile Networks and Applications, 2007, 12: 113-127. https://doi.org/10.1007/s11036-007-0017-1

THAKAR A. T., & PANDYA S. Survey of IoT enables healthcare devices. Proceedings of the International Conference on Computing Methodologies and Communication, Erode, 2017, pp. 1087-1090. https://doi.org/10.1109/ICCMC.2017.8282640

DE MATTOS W. D., & GONDIM P. R. M-health solutions using 5G networks and M2M communications. IT Professional, 2016, 18(3): 24-29. https://doi.org/10.1109/MITP.2016.52

POSTOLACHE O., GIRÃO P. S., and POSTOLACHE G. Pervasive Sensing and M-Health: Vital Signs and Daily Activity Monitoring. In: MUKHOPADHYAY S., & POSTOLACHE O. (eds.) Pervasive and Mobile Sensing and Computing for Healthcare. Smart Sensors, Measurement and Instrumentation, Vol. 2. Springer, Berlin, Heidelberg, 2013: 1–49. https://doi.org/10.1007/978-3-642-32538-0_1

BAKER S. B., XIANG W., and ATKINSON I. Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities. IEEE Access, 2017, 5: 26521-26544. https://doi.org/10.1109/ACCESS.2017.2775180

ELAYAN H., SHUBAIR R. M., and KIOURTI A. Wireless sensors for medical applications: Current status and future challenges. Proceedings of the 11th European Conference on Antennas and Propagation, Paris, 2017, pp. 2478-2482. https://doi.org/10.23919/EuCAP.2017.7928405

KUMAR N. IoT architecture and system design for healthcare systems. Proceedings of the International Conference on Smart Technologies for Smart Nation, Bengaluru, 2017, pp. 1118-1123. https://doi.org/10.1109/SmartTechCon.2017.8358543

MA L., LIU X., PEI Q., and XIANG Y. Privacy-preserving reputation management for edge computing enhanced mobile crowdsensing. IEEE Transactions on Services Computing, 2018, 12(5): 786-799. https://doi.org/10.1109/TSC.2018.2825986

FAN Q., & ANSARI N. Workload allocation in hierarchical cloudlet networks. IEEE Communications Letters, 2018, 22(4): 820-823. https://doi.org/10.1109/LCOMM.2018.2801866

CHEN W., WANG D., and LI K. Multi-user multi-task computation offloading in green mobile edge cloud computing. IEEE Transactions on Services Computing, 2018, 12(5): 726-738. https://doi.org/10.1109/TSC.2018.2826544

KOZIK R., CHORAŚ M., FICCO M., and PALMIERI F. A scalable distributed machine learning approach for attack detection in edge computing environments. Journal of Parallel and Distributed Computing, 2018, 119: 18-26. https://doi.org/10.1016/j.jpdc.2018.03.006

WU S., MEI C., JIN H., and WANG D. Android Unikernel: Gearing mobile code offloading towards edge computing. Future Generation Computer Systems, 2018, 86: 694-703. https://doi.org/10.1016/j.future.2018.04.069

CUI J., WEI L., ZHANG J., XU Y., and ZHONG H. An efficient message-authentication scheme based on edge computing for vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(5): 1621-1632. https://doi.org/10.1109/TITS.2018.2827460

WANG R., YAN J., WU D., WANG H., and YANG Q. Knowledge-centric edge computing based on virtualized D2D communication systems. IEEE Communications Magazine, 2018, 56(5): 32-38. https://doi.org/10.1109/MCOM.2018.1700876

CHEN M., LI W., HAO Y., QIAN Y., and HUMAR I. Edge cognitive computing based smart healthcare system. Future Generation Computer Systems, 2018, 86: 403-411. https://doi.org/10.1016/j.future.2018.03.054

ZHAO Z., MIN G., GAO W., WU Y., DUAN H., and NI Q. Deploying edge computing nodes for large-scale IoT: A diversity aware approach. IEEE Internet of Things Journal, 2018, 5(5): 3606-3614. https://doi.org/10.1109/JIOT.2018.2823498

LIU Y., XU C., ZHAN Y., LIU Z., GUAN J., and ZHANG H. Incentive mechanism for computation offloading using edge computing: A Stackelberg game approach. Computer Networks, 2017, 129: 399-409. https://doi.org/10.1016/j.comnet.2017.03.015

WANG P., OUYANG T., LIAO G., GONG J., YU S., and CHEN X. Edge intelligence in motion: Mobility-aware dynamic DNN inference service migration with downtime in mobile edge computing. Journal of Systems Architecture, 2022, 130: 102664. https://doi.org/10.1016/j.sysarc.2022.102664

CHEN X., ZHOU Z., WU W., WU D., and ZHANG J. Socially-motivated cooperative mobile edge computing. IEEE Network, 2018, 32(6): 177-183. https://doi.org/10.1109/MNET.2018.1700354

JIA G., HAN G., XIE H., and DU J. Hybrid-LRU caching for optimizing data storage and retrieval in edge computing-based wearable sensors. IEEE Internet of Things Journal, 2018, 6(2): 1342-1351. https://doi.org/10.1109/JIOT.2018.2834533

FAN Q., & ANSARI N. Application aware workload allocation for edge computing-based IoT. IEEE Internet of Things Journal, 2018, 5(3): 2146-2153. https://doi.org/10.1109/JIOT.2018.2826006

DU M., WANG K., XIA Z., and ZHANG Y. Differential privacy preserving of training model in wireless big data with edge computing. IEEE Transactions on Big Data, 2018, 6(2): 283-295. https://doi.org/10.1109/TBDATA.2018.2829886

YUAN J., & LI X. A reliable and lightweight trust computing mechanism for IoT edge devices based on multi-source feedback information fusion. IEEE Access, 2018, 6: 23626-23638. https://doi.org/10.1109/ACCESS.2018.2831898

AHMED E., & REHMANI M. H. Mobile edge computing: opportunities, solutions, and challenges. Future Generation Computer Systems, 2017, 70: 59-63. https://doi.org/10.1016/j.future.2016.09.015

BAIG I., AYAZ M., and JEOTI V. A SLM based localized SC-FDMA uplink system with reduced PAPR for LTE-A. Journal of King Saud University - Engineering Sciences, 2013, 25(2): 119-123. https://doi.org/10.1016/j.jksues.2012.04.002

VAN RIJMENAM M. Self-driving cars will create 2 petabytes of data, what are the big data opportunities for the car industry. The Digital Speaker, 2017. https://www.thedigitalspeaker.com/self-driving-cars-will-create-2-petabytes-of-data-what-are-the-big-data-opportunities-for-the-car-industry/

NADEEM L., AZAM M. A., AMIN Y., AL-GHAMDI M. A., CHAI K. K., KHAN M. F. N., and KHAN M. A. Integration of D2D, network slicing, and MEC in 5G cellular networks: Survey and challenges. IEEE Access, 2021, 9: 37590-37612. https://doi.org/10.1109/ACCESS.2021.3063104


Refbacks

  • There are currently no refbacks.