Mobile Edge Computing in Smart Healthcare: A Comprehensive Review, Challenges and Future Directions
Abstract
Mobile Edge Computing (MEC) is a distributed computing paradigm that brings computational resources closer to the edge of the network, enabling faster processing and low-latency interactions for applications and services. This computing paradigm is crucial for many applications, including intelligent healthcare systems, where it allows for the rapid analysis of healthcare data at the edge, supporting prompt and effective health-related services, remote patient monitoring, and personalized medicine. In this paper, we aim to comprehensively review MEC applications in the context of smart healthcare systems. The primary focus is on the integration of MEC technology as a pivotal solution to address the growing demand for efficient and real-time healthcare services. To highlight the purpose and novelty of this research, we delve into the current status of MEC in healthcare, examining both the significant challenges and opportunities in this domain. Challenges, including latency, security, and scalability, are discussed, providing insights into the complexities of implementing MEC in healthcare. Notably, our paper contributes by providing research directions to address these challenges, thereby unlocking the full potential of MEC, hence offering a roadmap for future advancements for smart healthcare systems.
Keywords: mobile edge computing, smart healthcare, network.
Full Text:
PDFReferences
RAUNIYAR A., HAGOS D. H., JHA D., HÅKEGÅRD J. E., BAGCI U., RAWAT D. B., and VLASSOV V. Federated learning for medical applications: A taxonomy, current trends, challenges, and future research directions. IEEE Internet of Things Journal, 2024, 11(5): 7374-7398. https://doi.org/10.1109/JIOT.2023.3329061
WALIA G. K., KUMAR M., and GILL S. S. AI-empowered fog/edge resource management for IoT applications: A comprehensive review, research challenges, and future perspectives. IEEE Communications Surveys & Tutorials, 2024, 26(1): 619-669. https://doi.org/10.1109/COMST.2023.3338015
AMINIZADEH S., HEIDARI A., TOUMAJ S., DARBANDI M., NAVIMIPOUR N. J., REZAEI M., TALEBI S., AZAD P., and UNAL M. The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things. Computer Methods and Programs in Biomedicine, 2023, 241: 107745. https://doi.org/10.1016/j.cmpb.2023.107745
AHMED S. F., ALAM M. S. B., AFRIN S., RAFA S. J., RAFA N., and GANDOMI A. H. Insights into Internet of Medical Things (IoMT): Data fusion, security issues and potential solutions. Information Fusion, 2024, 102: 102060. https://doi.org/10.1016/j.inffus.2023.102060
ALI A., AL-RIMY B. A. S., ALSUBAEI F. S., ALMAZROI A. A., and ALMAZROI A. A. HealthLock: Blockchain-Based Privacy Preservation Using Homomorphic Encryption in Internet of Things Healthcare Applications. Sensors, 2023, 23(15): 6762. https://doi.org/10.3390/s23156762
HOSSAIN M. R., WHAIDUZZAMAN M., BARROS A., TULY S. R., MAHI M. J., ROY S., FIDGE C., and BUYYA R. A scheduling-based dynamic fog computing framework for augmenting resource utilization. Simulation Modelling Practice and Theory, 2021, 111: 102336. https://doi.org/10.1016/j.simpat.2021.102336
MANIKANDAN R., PATAN R., GANDOMI A. H., SIVANESAN P., and KALYANARAMAN H. Hash polynomial two factor decision tree using IoT for smart health care scheduling. Expert Systems with Applications, 2020, 141: 112924. https://doi.org/10.1016/j.eswa.2019.112924
NING Z., DONG P., WANG X., HU X., GUO L., HU B., GUO Y., QIU T., and KWOK R. Y. Mobile Edge Computing Enabled 5G Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach. IEEE Journal on Selected Areas in Communications, 2020, 39(2): 463-478. https://doi.org/10.1109/JSAC.2020.3020645
PACE P., ALOI G., GRAVINA R., CALICIURI G., FORTINO G., and LIOTTA A. An Edge-Based Architecture to Support Efficient Applications for Healthcare Industry 4.0. IEEE Transactions on Industrial Informatics, 2018, 15(1): 481-489. https://doi.org/10.1109/TII.2018.2843169
VERMA P., & SOOD S. K. Fog assisted-IoT enabled patient health monitoring in smart homes. IEEE Internet of Things Journal, 2018, 5(3): 1789-1796. https://doi.org/10.1109/JIOT.2018.2803201
JAZAERI S. S., ASGHARI P., JABBEHDARI S., and JAVADI H. H. S. Toward caching techniques in edge computing over SDN-IoT architecture: A review of challenges, solutions, and open issues. Multimedia Tools and Applications, 2024, 83(1): 1311-1377. https://doi.org/10.1007/s11042-023-15657-7
SIRISHA G., & REDDY A. M. Smart healthcare analysis and therapy for voice disorder using cloud and edge computing. Proceedings of the 4th International Conference on Applied and Theoretical Computing and Communication Technology, Mangalore, 2018, pp. 103-106. https://doi.org/10.1109/iCATccT44854.2018.9001280
PAUL A., PINJARI H., HONG W. H., SEO H. C., and RHO S. Fog computing-based IoT for health monitoring system. Journal of Sensors, 2018, 2018: 1386470. https://doi.org/10.1155/2018/1386470
TULI S., BASUMATARY N., GILL S. S., KAHANI M., ARYA R. C., WANDER G. S., and BUYYA R. HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future Generation Computer Systems, 2020, 104: 187-200. https://doi.org/10.1016/j.future.2019.10.043
OUEIDA S., KOTB Y., ALOQAILY M., JARARWEH Y., and BAKER T. An edge computing based smart healthcare framework for resource management. Sensors, 2018, 18(12): 4307. https://doi.org/10.3390/s18124307
SEBILLO M., TORTORA G., TUCCI M., VITIELLO G., GINIGE A., and DI GIOVANNI P. Combining personal diaries with territorial intelligence to empower diabetic patients. Journal of Visual Languages & Computing, 2015, 29: 1-14. https://doi.org/10.1016/j.jvlc.2015.03.002
MIAH S. J., HASAN J., and GAMMACK J. G. On-cloud healthcare clinic: an e-health consultancy approach for remote communities in a developing country. Telematics and Informatics, 2017, 34(1): 311-322. https://doi.org/10.1016/j.tele.2016.05.008
CHEN Y., HAN S., CHEN G., YIN J., WANG K. N., and CAO J. A deep reinforcement learning-based wireless body area network offloading optimization strategy for healthcare services. Health Information Science and Systems, 2023, 11(1): 8. https://doi.org/10.1007/s13755-023-00212-3
RAJ P., SAINI K., and SURIANARAYANAN C. Edge/Fog Computing Paradigm: The Concept, Platforms and Applications, Vol. 127. Academic Press, 2022. https://www.sciencedirect.com/bookseries/advances-in-computers/vol/127/suppl/C
LI X., & DA XU L. A Review of Internet of Things—Resource Allocation. IEEE Internet of Things Journal, 2020, 8(11): 8657-8666. https://doi.org/10.1109/JIOT.2020.3035542
SHARIF Z., JUNG L. T., AYAZ M., YAHYA M., and PITAFI S. Priority-based task scheduling and resource allocation in edge computing for health monitoring system. Journal of King Saud University - Computer and Information Sciences, 2023, 35(2): 544-559. https://doi.org/10.1016/j.jksuci.2023.01.001
SHUKLA S., HASSAN M. F., TRAN D. C., AKBAR R., PAPUTUNGAN I. V., and KHAN M. K. Improving latency in Internet-of-Things and cloud computing for real-time data transmission: a systematic literature review (SLR). Cluster Computing, 2023, 26: 2657–2680. https://doi.org/10.1007/s10586-021-03279-3
REN J., YU G., CAI Y., and HE Y. Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 2018, 17(8): 5506-5519. https://doi.org/10.1109/TWC.2018.2845360
NGUYEN D. T., LE L. B., and BHARGAVA V. Price-based resource allocation for edge computing: A market equilibrium approach. IEEE Transactions on Cloud Computing, 2018, 9(1): 302-317. https://doi.org/10.1109/TCC.2018.2844379
RAFIQUE H., SHAH M. A., ISLAM S. U., MAQSOOD T., KHAN S., and MAPLE C. A novel bio-inspired hybrid algorithm (NBIHA) for efficient resource management in fog computing. IEEE Access, 2019, 7: 115760-115773. https://doi.org/10.1109/ACCESS.2019.2924958
SHAKARAMI A., SHAHIDINEJAD A., and GHOBAEI-ARANI M. An autonomous computation offloading strategy in Mobile Edge Computing: A deep learning-based hybrid approach. Journal of Network and Computer Applications, 2021, 178: 102974. https://doi.org/10.1016/j.jnca.2021.102974
MAHMOUD M. M., RODRIGUES J. J., AHMED S. H., SHAH S. C., AL-MUHTADI J. F., KOROTAEV V. V., and DE ALBUQUERQUE V. H. C. Enabling technologies on cloud of things for smart healthcare. IEEE Access, 2018, 6: 31950-31967. https://doi.org/10.1109/ACCESS.2018.2845399
AMMAD-UDIN M., MANSOUR A., LE JEUNE D., AGGOUNE E. H. M., and AYAZ M. UAV routing protocol for crop health management. Proceedings of the 24th European Signal Processing Conference, Budapest, 2016, pp. 1818-1822. https://doi.org/10.1109/EUSIPCO.2016.7760562
ABDELNAPI N. M. M., OMRAN N. F., ALI A. A., and OMARA F. A. A survey of internet of things technologies and projects for healthcare services. Proceedings of the International Conference on Innovative Trends in Computer Engineering, Aswan, 2018, pp. 48-55. https://doi.org/10.1109/ITCE.2018.8316599
AUN N. F. M., SOH P. J., AL-HADI A. A., JAMLOS M. F., VANDENBOSCH G. A., and SCHREURS D. Revolutionizing wearables for 5G: 5G technologies: Recent developments and future perspectives for wearable devices and antennas. IEEE Microwave Magazine, 2017, 18(3): 108-124. https://doi.org/10.1109/MMM.2017.2664019
VARSHNEY U. Pervasive healthcare and wireless health monitoring. Mobile Networks and Applications, 2007, 12: 113-127. https://doi.org/10.1007/s11036-007-0017-1
THAKAR A. T., & PANDYA S. Survey of IoT enables healthcare devices. Proceedings of the International Conference on Computing Methodologies and Communication, Erode, 2017, pp. 1087-1090. https://doi.org/10.1109/ICCMC.2017.8282640
DE MATTOS W. D., & GONDIM P. R. M-health solutions using 5G networks and M2M communications. IT Professional, 2016, 18(3): 24-29. https://doi.org/10.1109/MITP.2016.52
POSTOLACHE O., GIRÃO P. S., and POSTOLACHE G. Pervasive Sensing and M-Health: Vital Signs and Daily Activity Monitoring. In: MUKHOPADHYAY S., & POSTOLACHE O. (eds.) Pervasive and Mobile Sensing and Computing for Healthcare. Smart Sensors, Measurement and Instrumentation, Vol. 2. Springer, Berlin, Heidelberg, 2013: 1–49. https://doi.org/10.1007/978-3-642-32538-0_1
BAKER S. B., XIANG W., and ATKINSON I. Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities. IEEE Access, 2017, 5: 26521-26544. https://doi.org/10.1109/ACCESS.2017.2775180
ELAYAN H., SHUBAIR R. M., and KIOURTI A. Wireless sensors for medical applications: Current status and future challenges. Proceedings of the 11th European Conference on Antennas and Propagation, Paris, 2017, pp. 2478-2482. https://doi.org/10.23919/EuCAP.2017.7928405
KUMAR N. IoT architecture and system design for healthcare systems. Proceedings of the International Conference on Smart Technologies for Smart Nation, Bengaluru, 2017, pp. 1118-1123. https://doi.org/10.1109/SmartTechCon.2017.8358543
MA L., LIU X., PEI Q., and XIANG Y. Privacy-preserving reputation management for edge computing enhanced mobile crowdsensing. IEEE Transactions on Services Computing, 2018, 12(5): 786-799. https://doi.org/10.1109/TSC.2018.2825986
FAN Q., & ANSARI N. Workload allocation in hierarchical cloudlet networks. IEEE Communications Letters, 2018, 22(4): 820-823. https://doi.org/10.1109/LCOMM.2018.2801866
CHEN W., WANG D., and LI K. Multi-user multi-task computation offloading in green mobile edge cloud computing. IEEE Transactions on Services Computing, 2018, 12(5): 726-738. https://doi.org/10.1109/TSC.2018.2826544
KOZIK R., CHORAŚ M., FICCO M., and PALMIERI F. A scalable distributed machine learning approach for attack detection in edge computing environments. Journal of Parallel and Distributed Computing, 2018, 119: 18-26. https://doi.org/10.1016/j.jpdc.2018.03.006
WU S., MEI C., JIN H., and WANG D. Android Unikernel: Gearing mobile code offloading towards edge computing. Future Generation Computer Systems, 2018, 86: 694-703. https://doi.org/10.1016/j.future.2018.04.069
CUI J., WEI L., ZHANG J., XU Y., and ZHONG H. An efficient message-authentication scheme based on edge computing for vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(5): 1621-1632. https://doi.org/10.1109/TITS.2018.2827460
WANG R., YAN J., WU D., WANG H., and YANG Q. Knowledge-centric edge computing based on virtualized D2D communication systems. IEEE Communications Magazine, 2018, 56(5): 32-38. https://doi.org/10.1109/MCOM.2018.1700876
CHEN M., LI W., HAO Y., QIAN Y., and HUMAR I. Edge cognitive computing based smart healthcare system. Future Generation Computer Systems, 2018, 86: 403-411. https://doi.org/10.1016/j.future.2018.03.054
ZHAO Z., MIN G., GAO W., WU Y., DUAN H., and NI Q. Deploying edge computing nodes for large-scale IoT: A diversity aware approach. IEEE Internet of Things Journal, 2018, 5(5): 3606-3614. https://doi.org/10.1109/JIOT.2018.2823498
LIU Y., XU C., ZHAN Y., LIU Z., GUAN J., and ZHANG H. Incentive mechanism for computation offloading using edge computing: A Stackelberg game approach. Computer Networks, 2017, 129: 399-409. https://doi.org/10.1016/j.comnet.2017.03.015
WANG P., OUYANG T., LIAO G., GONG J., YU S., and CHEN X. Edge intelligence in motion: Mobility-aware dynamic DNN inference service migration with downtime in mobile edge computing. Journal of Systems Architecture, 2022, 130: 102664. https://doi.org/10.1016/j.sysarc.2022.102664
CHEN X., ZHOU Z., WU W., WU D., and ZHANG J. Socially-motivated cooperative mobile edge computing. IEEE Network, 2018, 32(6): 177-183. https://doi.org/10.1109/MNET.2018.1700354
JIA G., HAN G., XIE H., and DU J. Hybrid-LRU caching for optimizing data storage and retrieval in edge computing-based wearable sensors. IEEE Internet of Things Journal, 2018, 6(2): 1342-1351. https://doi.org/10.1109/JIOT.2018.2834533
FAN Q., & ANSARI N. Application aware workload allocation for edge computing-based IoT. IEEE Internet of Things Journal, 2018, 5(3): 2146-2153. https://doi.org/10.1109/JIOT.2018.2826006
DU M., WANG K., XIA Z., and ZHANG Y. Differential privacy preserving of training model in wireless big data with edge computing. IEEE Transactions on Big Data, 2018, 6(2): 283-295. https://doi.org/10.1109/TBDATA.2018.2829886
YUAN J., & LI X. A reliable and lightweight trust computing mechanism for IoT edge devices based on multi-source feedback information fusion. IEEE Access, 2018, 6: 23626-23638. https://doi.org/10.1109/ACCESS.2018.2831898
AHMED E., & REHMANI M. H. Mobile edge computing: opportunities, solutions, and challenges. Future Generation Computer Systems, 2017, 70: 59-63. https://doi.org/10.1016/j.future.2016.09.015
BAIG I., AYAZ M., and JEOTI V. A SLM based localized SC-FDMA uplink system with reduced PAPR for LTE-A. Journal of King Saud University - Engineering Sciences, 2013, 25(2): 119-123. https://doi.org/10.1016/j.jksues.2012.04.002
VAN RIJMENAM M. Self-driving cars will create 2 petabytes of data, what are the big data opportunities for the car industry. The Digital Speaker, 2017. https://www.thedigitalspeaker.com/self-driving-cars-will-create-2-petabytes-of-data-what-are-the-big-data-opportunities-for-the-car-industry/
NADEEM L., AZAM M. A., AMIN Y., AL-GHAMDI M. A., CHAI K. K., KHAN M. F. N., and KHAN M. A. Integration of D2D, network slicing, and MEC in 5G cellular networks: Survey and challenges. IEEE Access, 2021, 9: 37590-37612. https://doi.org/10.1109/ACCESS.2021.3063104
Refbacks
- There are currently no refbacks.