DBL2β-PfEMP1 Recombinant Protein Dose Effect on Inducing Humoral and Cellular Immune Responses in Wistar Rats: A Study on Malaria Vaccine Development

Erma Sulistyaningsih, Moh Iqbal Irsyad Al Zaman, Dwi Ari Santi Putri, Sheilla Rachmania, Irawan Fajar Kusuma, Rosita Dewi

Abstract

The DBL2β-PfEMP1 is a promising malaria vaccine candidate because of its essential role in malaria pathogenesis. This study aimed to determine the effective dose of DBL2β-PfEMP1 recombinant protein in inducing humoral and cellular immune responses by measuring immunoglobulin M (IgM), immunoglobulin G (IgG), and a cluster of differentiation 4 (CD4+) concentration in Wistar rats. The DBL2β-PfEMP1 recombinant protein was produced in Escherichia coli BL21(DE3) and purified by affinity chromatography using Ni-NTA resin. Wistar rats (Rattus norvegicus) weighing 150–200 g were randomly divided into control and three treatment groups. A control group was subcutaneously injected with 0.9% NaCl, and treatment groups were injected with 100, 150, and 200 µg of purified DBL2β-PfEMP1 recombinant protein three times at 3-week intervals. Sera were collected two weeks after each injection for immune response measurement using enzyme-linked immunosorbent assay (ELISA). Data were statistically analyzed using mixed-method ANOVA followed by a post hoc Bonferroni test. IgM and CD4+ concentrations consistently increased in all treatment groups after consecutive injections. However, IgG showed a slightly different result. The highest levels of IgM, IgG, and CD4+ were observed at a dose of 200 µg after the third injection. Statistical analysis confirmed the difference between the control and treatment groups with p=0.000, 0.034, and 0.006 for IgM, IgG, and CD4+. These findings imply that in the dose range of the study, a dose of 200 µg DBL2β-PfEMP1 recombinant protein resulted in the highest response to induce humoral and cellular immunity and could be an effective dose for malaria vaccine.

 

Keywords: immune response, malaria, PfEMP1, vaccine.

 

https://doi.org/10.55463/issn.1674-2974.50.12.4


Full Text:

PDF


References


WORLD HEALTH ORGANISATION. World malaria report 2021. World Health Organization, Geneva, 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021

MER M., DÜNSER M. W., GIERA R., and DONDORP A. M. Severe malaria. Current concepts and practical overview: What every intensivist should know. Intensive Care Medicine, 2020, 46: 907–918. https://doi.org/10.1007/s00134-020-06019-0

VARO R., CHACCOUR C., and BASSAT Q. Update on malaria. Medicina Clínica, 2020, 155: 395–402. https://doi.org/10.1016/j.medcli.2020.05.010

BEESON J. G., KURTOVIC L., VALIM C., ASANTE K. P., BOYLE M. J., MATHANGA D., DOBANO C., and MONCUNILL G. The RTS,S malaria vaccine: Current impact and foundation for the future. Science Translational Medicine, 2022, 14: eabo6646. https://doi.org/10.1126/scitranslmed.abo6646

THE LANCET. Malaria vaccine approval: A step change for global health. The Lancet, 2021, 398: P1381. https://doi.org/10.1016/S0140-6736(21)02235-2

CHAN J. A., FOWKES F. J. I., and BEESON J. G. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cellular and Molecular Life Sciences, 2014, 71: 3633–3657. https://doi.org/10.1007/s00018-014-1614-3

RASK T. S., HANSEN D. A., THEANDER T. G., GORM PEDERSEN A., and LAVSTSEN T. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes–divide and conquer. PLoS Computational Biology, 2010, 6: e1000933. https://doi.org/10.1371/journal.pcbi.1000933

JENSEN A. R., ADAMS Y., and HVIID L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunological Reviews, 2020, 293: 230–252. https://doi.org/10.1111/imr.12807

LEE W. C., RUSSELL B., and RENIA L. Sticking for a Cause: The Falciparum Malaria Parasites Cytoadherence Paradigm. Frontiers in Immunology, 2019, 10: 1444. https://doi.org/10.3389/fimmu.2019.01444

GHUMRA A., KHUNRAE P., ATAIDE R., RAZA A., ROGERSON S. J., HIGGINS M. K., and ROWE J. A. Immunisation with recombinant PfEMP1 domains elicits functional rosette-inhibiting and phagocytosis-inducing antibodies to Plasmodium falciparum. PLoS ONE, 2011, 6: e16414. https://doi.org/10.1371/journal.pone.0016414

GITAU E. N., TUJU J., KARANJA H., STEVENSON L., REQUENA P., KIMANI E., OLOTU A., KIMANI D., MARSH K., BULL P., and URBAN B. C. CD4+ T Cell Responses to the Plasmodium Falciparum Erythrocyte Membrane Protein 1 in Children with Mild Malaria. Journal of Immunology, 2014, 192: 1753–1761. https://doi.org/10.4049/jimmunol.1200547

RACHMANIA S., SULISTYANINGSIH E., and RATNA D. A. A. I. Recombinant DBL2β-PfEMP1 of the Indonesian Plasmodium Falciparum Induces Immune Responses in Wistar Rats. Journal of Taibah University Medical Sciences, 2021, 16(3): 422-430. https://doi.org/10.1016/j.jtumed.2020.12.007

GITAU E. N., TUJU J., STEVENSON L., KIMANI E., KARANJA H., MARSH K., BULL P. C., and URBAN B. C. T-Cell Responses to the DBLα-Tag, a Short Semi-Conserved Region of the Plasmodium falciparum Membrane Erythrocyte Protein 1. PLoS ONE, 2012, 7: e30095. https://doi.org/10.1371/journal.pone.0030095

MAYOR A., & DOBANO C. IgM and IgG against Plasmodium Falciparum Lysate as Surrogates of Malaria Exposure and Protection during Pregnancy. Malaria Journal, 2018, 17: 182. https://doi.org/10.1186/s12936-018-2331-4

THOMSON C. A. IgG Structure and Function. Encyclopedia of Immunobiology, 2016, 2: 15-22. https://doi.org/10.1016/B978-0-12-374279-7.05002-5

GONZALES S. J., REYES R. A., and BRADDOM A. E. Naturally Acquired Humoral Immunity against Plasmodium Falciparum Malaria. Frontiers in Immunology, 2020, 11: 594653. https://doi.org/10.3389/fimmu.2020.594653

BOYLE M. J., CHAN J. A., HANDAYUNI I., REILING L., FENG G., HILTON A., KURTOVIC L., OYONG D., PIERA K. A., BARBER B. E., WILLIAM T., EISEN D. P., MINIGO G., LANGER C., DREW D. R., DE LABASTIDA RIVERA F., AMANTE F. H., WILLIAMS T. N., KINYANJUI S., MARSH K., DOOLAN D. L., ENGWERDA C., FOWKES F. J. I., GRIGG M. J., MUELLER I., MCCARTHY J. S., ANSTEY N. M., and BEESON J. G. IgM in human immunity to Plasmodium falciparum malaria. Science Advances, 2019, 5(9): eaax4489. https://doi.org/10.1126/sciadv.aax4489

PLEASS R. J., MOORE S. C., STEVENSON L., and HVIID L. Immunoglobulin M: Restrainer of Inflammation and Mediator of Immune Evasion by Plasmodium Falciparum Malaria. Trends in Parasitology, 2016, 32: 108–119. https://doi.org/10.1016/j.pt.2015.09.007

KEYT B. A., BALIGA R., SINCLAIR A. M., CARROLL S. F., and PETERSON M. S. Structure, Function, and Therapeutic Use of IgM Antibodies. Antibodies, 2020, 9: 53. https://doi.org/10.3390/antib9040053

BIO-RAD LABORATORIES. Mini-PROTEAN® Precast Gels: Instruction Manual and Application Guide, 2011. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_1658100.pdf

GREENFIELD E A. Standard immunization of mice, rats, and hamsters. Cold Spring Harbor Protocols, 2020, 2020(3): 100297. https://doi.org/10.1101/pdb.prot100297

BIOASSAY TECHNOLOGY LABORATORY. Rat Immunoglobulin M, IgM ELISA Kit, 2021. https://www.bt-laboratory.com/index.php/Shop/Index/productShijiheDetail/p_id/3471/cate/kit.html

BIOASSAY TECHNOLOGY LABORATORY. Rat Immunoglobulin G, IgG ELISA Kit, 2021. https://www.bt-laboratory.com/index.php/Shop/Index/productShijiheDetail/p_id/3470/cate/kit.html

BIOASSAY TECHNOLOGY LABORATORY. CD4 Monoclonal Antibody(11A1), 2021. https://www.bt-laboratory.com/index.php/Shop/Index/productKangtiDetail/p_id/12282/cate/antibody.html

PHILLIPS M. A., BURROWS J. N., MANYANDO C., VAN HUIJSDUIJNEN R. H., VAN VOORHIS W. C., and WELLS T. N. C. Malaria. Nature Reviews Disease Primers, 2017, 3: 17050. https://doi.org/10.1038/nrdp.2017.50

HVIID L., & JENSEN A. T. R. PfEMP1 - A Parasite Protein Family of Key Importance in Plasmodium falciparum Malaria Immunity and Pathogenesis. Advances in Parasitology, 2015, 88: 51-84. https://doi.org/10.1016/bs.apar.2015.02.004

KRISHNAMURTY A. T., THOUVENEL C. D., PORTUGAL S., KEITANY G. J., KIM K. S., HOLDER A., CROMPTON P. D., RAWLINGS D. J., and PEPPER M. Somatically Hypermutated Plasmodium-Specific IgM(+) Memory B Cells Are Rapid, Plastic, Early Responders upon Malaria Rechallenge. Immunity, 2016, 45: 402–414. https://doi.org/10.1016/j.immuni.2016.06.014

DOBAÑO C., SANTANO R., VIDAL M., JIMÉNEZ A., JAIROCE C., UBILLOS I., DOSOO D., AGUILAR R., WILLIAMS N. A., DÍEZ-PADRISA N., AYESTARAN A., VALIM C., ASANTE K. P., OWUSU-AGYEI S., LANAR D., CHAUHAN V., CHITNIS C., DUTTA S., ANGOV E., GAMAIN B., COPPEL R. L., BEESON J. G., REILING L., GAUR D., CAVANAGH D., GYAN B., NHABOMBA A. J., CAMPO J. J., and MONCUNILL G. Differential Patterns of IgG Subclass Responses to Plasmodium falciparum Antigens in Relation to Malaria Protection and RTS,S Vaccination. Frontiers in Immunology, 2019, 10: 439. https://doi.org/10.3389/fimmu.2019.00439

JAMES K. R., SOON M. S. F., SEBINA I., FERNANDEZ-RUIZ D., DAVEY G., LILIGETO U. N., NAIR A. S., FOGG L. G., EDWARDS C. L., BEST S. E., LANSINK L. I. M., SCHRODER K., WILSON J. A. C., AUSTIN R., SUHRBIER A., LANE S. W., HILL G. R., ENGWERDA C. R., HEATH W. R., and HAQUE A. IFN Regulatory Factor 3 Balances Th1 and T Follicular Helper Immunity during Nonlethal Blood-Stage Plasmodium Infection. Journal of Immunology, 2018, 200(4): 1443–1456. https://doi.org/10.4049/jimmunol.1700782

DOOKIE R. S., VILLEGAS-MENDEZ A., KROEZE H., BARRETT J. R., DRAPER S. J., FRANKE-FAYARD B. M., JANSE C. J., MACDONALD A. S., and COUPER K. N. Combinatorial Tim-3 and PD-1 activity sustains antigen-specific Th1 cell numbers during blood-stage malaria. Parasite Immunology, 2020, 42: e12723. https://doi.org/10.1111/pim.12723

EDWARDS C. L., NG S. S., CORVINO D., MONTES DE OCA M., DE LABASTIDA RIVERA F., NONES K., LAKIS V., WADDELL N., AMANTE F. H., MCCARTHY J. S., and ENGWERDA C. R. Early Changes in CD4+ T-Cell Activation during Blood-Stage Plasmodium Falciparum Infection. The Journal of Infectious Diseases, 2018, 218: 1119–1129. https://doi.org/10.1093/infdis/jiy281


Refbacks

  • There are currently no refbacks.