Unmanned Underwater Vehicles: Applications and Challenges

Osama Hassanein, Anand Gopalakrishnan, Sobers Francis, Fawwaz Alkhatib, Shaaban Ali

Abstract

Unmanned underwater vehicles (UUVs) are widely used for scientific, commercial, and military underwater applications, some of which require accurate positioning and path control. Modeling, system identification, and control of these vehicles are still primary areas of research and development. They pose severe challenges due to their complex design, inherently nonlinear, and time-varying dynamics. This study aims to present a comprehensive survey of the literature discussing the classification and importance of underwater vehicle systems related to cost-effectiveness and versatility. Using UUVs in military, commercial, and civilian areas has led to tolerable results. These include but are not limited to, oil and gas industries, ocean seafloor mapping, hydrothermal vent studies, air crash investigations, mine countermeasures, and information operations. Because of the vehicles’ complex, inherently nonlinear and time-varying dynamics, UUV modeling, system identification, and control remain essential areas of study and development. A presented comprehensive literature review relates to primary applications, electrical power technology, underwater communication challenges, system modeling identification, and control techniques. This study provides an advantageous and thorough overview of the underwater system domain, serving as a valuable resource for upcoming researchers. It encompasses the key facets of UUVs, including their design, control mechanisms, and use. In addition, it delves into recent scholarly works concerning this technology and explores potential forthcoming advancements.

 

Keywords: underwater vehicles, autonomous underwater vehicle, unmanned underwater vehicle, unmanned vehicle system identification, unmanned vehicle modeling.

 

https://doi.org/10.55463/issn.1674-2974.50.11.8


Full Text:

PDF


References


BLIDBERG D.R. The Development of Autonomous Underwater Vehicles (AUV): A Brief Summary. In: 2001 IEEE International Conference on Robotics and Automation. Seoul, Korea, 2001.

NODLAND W., EWART T., BENDINER W., MILLER J., and AAGAARD E. SPURV II - An Unmanned, Free-Swimming Submersible Developed for Oceanographic Research. Boston, MA, 1981: 92-98. DOI: 10.1109/OCEANS.1981.1151607.

MURPHY S. Development of technical management plan for conducting Arctic region surveys using submersible vehicles, surface effect vehicles, and thermal ice-coring machines. Annual Report, 1 Jun. 1970 – 30 Jun. 1971, University of Washington, Arctic Technology Program.

MURPHY S. Arctic technology development at the University of Washington. Final Report. 1972.

BLIDBERG D., and CHAPPELL S. Guidance and control architecture for the EAVE vehicle. IEEE Journal of Oceanic Engineering, 1986, 11(4): 449-461. DOI: 10.1109/JOE.1986.1145207.

INSTITUTE OF MARINE TECHNOLOGY PROBLEMS. Research and development of uninhabited underwater robotic systems and complexes. Institution of the Russian Academy of Sciences Institute of Marine Technology Problems of the Far Eastern Branch of the Russian Academy of Sciences, 2023. (In Russian). http://www.imtp.febras.ru/podvodnaya-robototexnika.html

RUSSELL G. Heriot-Watt University. In: Proceedings of the 1980 1st International Symposium on Unmanned Untethered Submersible Technology, Durham, NH, USA, 1980: 2-3. DOI: 10.1109/UUST.1980.1158410.

CAREY E., and SHIRLEY D. Naval research laboratory. In: Proceedings of the 1980 1st International Symposium on Unmanned Untethered Submersible Technology, Durham, NH, USA, 1980: 4-7. DOI: 10.1109/UUST.1980.1158408.

MICHEL J. National Center for Ocean Exploitation. In: Proceedings of the 1980 1st International Symposium on Unmanned Untethered Submersible Technology, Durham, NH, USA, 1980, 8-9. DOI: 10.1109/UUST.1980.1158409.

CURTIN T.B., BELLINGHAM J.G., CATIPOVIC J., and WEBB D. Autonomous oceanographic sampling networks. Oceanography, 1993, 6(3): 86-94, https://doi.org/10.5670/oceanog.1993.03.

BELLINGHAM J.G., GOUDEY C.A., CONSI T.R., BALES J.W., ATWOOD D.K., LEONARD J.J., and CHRYSSOSTOMIDIS C. A second generation survey AUV. In: Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV'94), Cambridge, MA, USA, 1994: 148-155. DOI: 10.1109/AUV.1994.518619.

HEALEY A.J., PASCOAL A.M., and PEREIRA F.L. Autonomous underwater vehicles for survey operations: theory and practice. In: Proceedings of 1995 American Control Conference (ACC'95), Vol. 5, Seattle, WA, USA, 1995: 2943-2949. DOI: 10.1109/ACC.1995.532053.

FERGUSON J., and POPE A. Explorer – a modular AUV for commercial site survey. In: Proceedings of the 2000 International Symposium on Underwater Technology, Tokyo, Japan, 2000: 129-132. DOI: 10.1109/UT.2000.852528.

WHITT C., PEARLMAN J., POLAGYE B., CAIMI F., MULLER-KARGER F., COPPING A., SPENCE H., MADHUSUDHANA S., KIRKWOOD W., GROSJEAN L., FIAZ B.M., SINGH S., SINGH S., MANALANG D., GUPTA A.S., MAGUER A., BUCK J.J.H., MAROUCHOS A., ATMANAND M.A., VENKATESAN R., NARAYANASWAMY V., TESTOR P., DOUGLAS E., DE S. HALLEUX, and KHALSA S.J. Future Vision for Autonomous Ocean Observations. Frontiers in Marine Science, 2020, 7: 697. DOI: 10.3389/fmars.2020.00697

NOURI N.M., ZEIN A.M., and JAHANGARDY Y. AUV hull shape design based on desired pressure distribution. Journal of Marine Science and Technology, 2015, 21: 203-215.

TAYLOR D.W. Calculations for ships’ forms and the light thrown by model experiments upon resistance, propulsion, and rolling of ships. In: Transactions of the Inter-National Engineering Congress, San Francisco, California, 20-25 September 1915.

YAMAGUCHI S. A study on shape optimization for an underwater vehicle. In: Proceedings of the Fifth (2002) ISOPE Pacific/Asia Offshore Mechanics Symposium. Daejeon, Republic of Korea, 2002: 17-20.

ROBERTS G.N. Trends in Marine Control Systems. Annual Reviews in Control, 2008, 32: 263-269.

BUDIYONO A. Advances In Unmanned Underwater Vehicles Technologies: Modeling, Control And Guidance Perspectives. Indian Journal of Marine Sciences, 2009, 38(3): 282-296.

HASSANEIN O., SREENATHA G., ABOOBACKER S., and ALI S. Development of Low Cost Autonomous Underwater Vehicle Platform. International Journal on Smart Sensing and Intelligent Systems, 14(1): 1-22. https://sciendo.com/article/10.21307/ijssis-2021-005

WYNN R.B., VEERLE A.I., HUVENNE, LE BAS T., MURTON B.J., CONNELLY D. , BETT B.J., RUHL H.A., MORRIS K.J., PEAKALL J., PARSONS D.R., SUMNER E.J., DARBY S.E., DORRELL R.M., and HUNT J.E. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Elsevier Ltd, 2014: 1-18. http://dx.doi.org/10.1016/j.margeo.2014.03.012

SAHOO A., DWIVEDY S.K., and ROBI S. Advancements in the field of autonomous underwater vehicle. Elsevier Ltd, 2019: 145-160. https://doi.org/10.1016/j.oceaneng.2019.04.011

SATO Y., MAKI T., MASUDA K., MATSUDA T., and SAKAMAKI T. Autonomous Docking of Hovering Type AUV to Seafloor Charging Station based on acoustic and visual sensing. In: IEEE Underwater Technology Conference, Busan, South Korea, 2017.

LIN M., and YANG C. AUV Docking Method in a Confined Reservoir with Good Visibility. Journal of Intelligent & Robotic Systems, 2020, 100: 349-361. https://doi.org/10.1007/s10846-020-01175-3

CHEN E., and GUO J. Real time map generation using sidescan sonar scanlines for unmanned underwater vehicles. Elsevier Ltd, 2014: 252-262. http://dx.doi.org/10.1016/j.oceaneng.2014.09.017

COSTA M., PINTO J., RIBEIRO M., LIMA K., MONTEIRO A., KOWALCZYK P., UNDE J.S., BLOOMER S., KOWALCZYK M., KOWALCZYK P., CONSTABLE S., HABER E., and KASUGA T. AUV-CSEM: An Improvement in the Efficiency of Multi-sensor Mapping of Seafloor Massive Sulfide (SMS) Deposits with an AUV. In: Proceedings of the 2018 OCEANS MTS/IEEE Conference: Kobe Techno-Oceans, Underwater Archaeology with Light AUVs, 2019.

BORE N., and FOLKESSON J. Modeling and Simulation of Sidescan Using Conditional Generative Adversarial Network. IEEE Journal of Oceanic Engineering, 2020: 1-11. http://dx.doi.org/10.1109/JOE.2020.2980456

HONG S., KIM J., PYO J., and YU S.-C. A robust loop-closure method for visual SLAM in unstructured seafloor environments. Autonomus Robots, 2015, 40(6): 1095-1109.

HONG S.M., HA K.N., and KIM J.-Y. Dynamics Modeling and Motion Simulation of USV/UUV with Linked Underwater Cable. Journal of Marine Science and Engineering, 2020, 8(5): 318. https://doi.org/10.3390/jmse8050318

RAMADASS G.A., RAMESH S., VEDACHALAM N., SUBRAMANIAN A.N., SATHIANARAYANAN D., RAMESH R., HARIKRISHNAN G., CHOWDHURY T.,. JYOTHI V.B.N, PRANESH S.B., PRAKASH V.D., and ATMANAND M.A. Unmanned underwater vehicles: Design considerations and outcome of scientific expeditions. Current Science, 2020, 118(11): 1681-1686.

ZHANG B., SONG B., MAO Z., JIANG J., and SUN C. Hydrodynamic characteristics and stability simulation of four-rotor dish-shaped UUV landing on the seabed. In: Proceedings of the OCEANS 2016 MTS/IEEE Conference. Monterey, CA, 2016: 1-5. DOI: 10.1109/OCEANS.2016.7761024.

ZHOU M., BACHMAYER R., and DE YOUNG B. Working towards seafloor and underwater iceberg mapping with a Slocum glider. In: Proceedings of the 2014 IEEE/OES Conference on Autonomous Underwater Vehicles (AUV). Oxford, MS, 2014: 1-5. DOI: 10.1109/AUV.2014.7054413.

YAMAGATA H., MAKI T., YOSHIDA H., and NOGI Y. Hardware Design of Variable and Compact AUV “MONACA” for Under-Ice Survey of Antarctica. In: 2019 IEEE Underwater Technology Conference. Kaohsiung, Taiwan, 2019: 1-4. DOI: 10.1109/UT.2019.8734395.

MAROUCHOS A., MUIR B., BABCOCK R., and DUNBABIN M. A shallow water AUV for benthic and water column observations. In: Proceedings of the OCEANS 2015 Conference. Genova, 2015: 1-7. DOI: 10.1109/OCEANS-Genova.2015.7271362.

ZHANG B., SONG B.-W., ZHU X.-Y., and ZHU Q.-F. Modeling and simulation of unmanned underwater vehicle parking on seabed. Acta Armamentarii, 2014, 35: 572-576. DOI: 10.3969/j.issn.1000-1093.2014.04.021.

MAEDA Y., SHITASHIMA K., and SAKAMOTO A. Mapping observations using AUV and numerical simulations of leaked CO2 diffusion in sub-seabed CO2 release experiment at Ardmucknish Bay. International Journal of Greenhouse Gas Control, 2015, 38: 143-152. http://dx.doi.org/10.1016/j.ijggc.2015.01.017

OKAMOTO A., SASANO M., SETA T., INABA S., SATO K., NISHIDA K.T.Y., and URA T. Obstacle Avoidance Method Appropriate for the Steep Terrain of the Deep Seafloor. In: Proceedings of the 2016 IEEE Techno-Ocean Conference, Kobe, Japan, 6–8 October 2016. 2016: 195-198.

HUANG S., CHEN E., and GUO J. Seafloor obstacle detection by sidescan sonar scanlines for submarine cable construction. In: Proceedings of 2014 Oceans Conference. St. John's, NL, Canada, 2014: 1-6. DOI: 10.1109/OCEANS.2014.7003249.

SANGEKAR M.N., THORNTON B., BODENMANN A., and URA T. Autonomous Landing of Underwater Vehicles Using High-Resolution Bathymetry. IEEE Journal of Oceanic Engineering, 2019. 1-16. http://dx.doi.org/10.1109/JOE.2019.2946923

SALHAOUI M., MOLINA-MOLINA J.C., GUERRERO-GONZÁLEZ A., ARIOUA M., and ORTIZ F.J. Autonomous Underwater Monitoring System for Detecting Life on the Seabed by Means of Computer Vision Cloud Services. Remote Sensing, 2020, 12(12): 1981.

DANCKAERS A., and SETO M.L. Transmission of images by unmanned underwater vehicles. Autonomous Robots, 2020, 44: 3-24. https://doi.org/10.1007/s10514-019-09866-z

ZHANG H., ZHANG J., LIU Y., WANG Y., WANG S., WU Z., WANG F., HAO L., and ZHENG Y. Research on the influence of balance weight parameters on the motion performance of the seafloor mapping AUV in vertical plane. Ocean Engineering, 2015, 109: 217-225.

ARMSTRONG R. Landscape-Level Imaging of Benthic Environments in Optically-Deep Waters. In: FINK C., MAKOWSKI C. (eds.) Seafloor Mapping along Continental Shelves. Coastal Research Library, 13. Springer, Cham. https://doi.org/10.1007/978-3-319-25121-9_10

KILGOUR M., AUSTER P., PACKER D, PURCELL M., PACKARD G., DESSNER M., SHERRELL A., and RISSOLO D. Use of AUVs to Inform Management of Deep-Sea Corals. Marine Technology Society Journal, 2014, 48. 10.4031/MTSJ.48.1.2.

ZWOLAK, K., WIGLEY R., BOHAN A., ZARAYSKAYA Y., BAZHENOVA E., DORSHOW W., SUMIYOSHI M., SATTIABARUTH S., ROPEREZ J., PROCTOR A., WALLACE C., SADE H., KETTER T., SIMPSON B., TINMOUTH N., FALCONER R., RYZHOV I., and ABOU-MAHMOUD M.E.E. The Autonomous Underwater Vehicle Integrated with the Unmanned Surface Vessel Mapping the Southern Ionian Sea. The Winning Technology Solution of the Shell Ocean Discovery XPRIZE. Remote Sensing, 2020, 12: 1344.

COCHRANE S.K.J., EKEHAUG S., PETTERSEN R., REFIT, E.C., HANSEN I.M., and AAS L. Detection of deposited drill cuttings on the sea floor – A comparison between underwater hyperspectral imagery and the human eye. Marine Pollution Bulletin, 2019, 145: 67-80. DOI: 10.1016/j.marpolbul.2019.04.031.

CAMPBELL K., & KINNEAR S., and THAME A. AUV technology for seabed characterization and geohazards assessment. The Leading Edge, 2015, 34: 170-178. DOI: 10.1190/tle34020170.1.

ANONSEN K.B., HAGEN O.K., and TELLE H.S. Terrain navigation techniques for AUV MCM operations. UDT 2020. Extended abstract announcement, session autonomy at sea, 2020: 1-4.

CRAWFORD A., and CONNORS W. Performance Evaluation of 3-D Sidescan Sonar for Mine Countermeasures. In: Proceedings of the OCEANS 2018 MTS/IEEE Conference. Charleston, SC, 2018: 1-6. DOI: 10.1109/OCEANS.2018.8604811

LUO H., LIN H., ZHU T., and KANG Z. Complete Coverage Path Planning of UUV for Marine Mine Countermeasure Using Grid Division and Spanning Tree. In: Proceedings of the Chinese Control and Decision Conference (CCDC). Nanchang, China, 2019: 5016-5021. DOI: 10.1109/CCDC.2019.8832742.

MCMAHON J., and PLAKU E. Autonomous underwater vehicle Mine Countermeasures mission planning via the Physical Traveling Salesman Problem. In: Proceedings of the OCEANS 2015 MTS/IEEE Conference. Washington, DC, 2015: 1-5. DOI: 10.23919/OCEANS.2015.7404372.

FRANSMAN J., SIJS J., DOL H., THEUNISSEN E., and DE SCHUTTER B. Distributed constraint optimization for autonomous multi AUV mine counter-measures. In: Proceedings of the OCEANS 2018 MTS/IEEE Conference. Charleston, SC, 2018: 1-7. DOI: 10.1109/OCEANS.2018.8604924.

SONG K., and CHU C. Conceptual Design of Future Undersea Unmanned Vehicle (UUV) System for Mine Disposal. IEEE Systems Journal, 2014, 8(1): 43-51. DOI: 10.1109/JSYST.2012.2210592.

YORDANOVA V., GIPS B., FURFARO T. and DUGELAY S. Coverage Path Planning for Mine Countermeasures: Adapting Track Orientation. In: Proceedings of the OCEANS 2019 Conference. Marseille, France, 2019: 3-7. DOI: 10.1109/OCEANSE.2019.8867065

FERREIRA, F., DJAPIC, V., MICHELI, M., and CACCIA, M. Forward looking sonar mosaicing for Mine Countermeasures. Annual Reviews in Control, 2015, 40: 212-226. https://doi.org/10.1016/j.arcontrol.2015.09.014

DUGELAY S., WILLIAMS D., FURFARO T., MELO J., YORDANOVA V., STRODE C., GIPS B., and PAILHAS Y. Enabling Autonomous Mine Countermeasures for the NATO Alliance. UACE 2019 – Conference Proceedings, 2019: 975-986.

KIM K., SATO T., and MATSUDA T. Advanced AUV Navigation and Operation towards Safer and Efficient Near-Bottom Survey. In: Proceedings of the OCEANS 2019 Conference. Marseille, France, 2019: 1-6. DOI: 10.1109/OCEANSE.2019.8867317.

NEETTIYATH U., THORNTON B., NISHIDA Y., and ISHI K. An AUV Based Method for Estimating Hectare-scale Distributions of Deep Sea Cobalt-rich Manganese Crust Deposits. In: Proceedings of the OCEANS 2019 Conference. Marseille, France, 2019: 1-6. DOI: 10.1109/OCEANSE.2019.8867481.

SASANO M., OKAMOTO A., SETA T., and INABA S. Detection of Small Hydrothermal Vents by Low-Altitude Seafloor Exploration of a Hovering-Type AUV “Hobalin.” In: Proceedings of the 2018 OCEANS MTS/IEEE Techno-Oceans Conference. Kobe, 2018: 1-4. DOI: 10.1109/OCEANSKOBE.2018.8559230.

ZAIN Z.M., NOH M.M, AB RAHIM K.A., and HARUN N. Design and development of an X4-ROV. In: 2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS). Penang, 2016: 207-211. DOI: 10.1109/USYS.2016.7893910.

OKAMOTO A., SASANO M., SETA T., HIRAO S.C. and INABA S. Deployment of the AUV HOBALIN to an Active Hydrothermal Vent Field with an Improved Obstacle Avoidance System. In: Proceedings of the 2018 OCEANS MTS/IEEE Techno-Oceans Conference. Kobe, 2018: 1-6. DOI: 10.1109/OCEANSKOBE.2018.8559396.

WU T., TAO C., ZHANG J., WANG A., ZHANG G., ZHOU J., and DEN X. A hydrothermal investigation system for the Qianlong-II autonomous underwater vehicle. Acta Oceanologica Sinica, 2019, 38: 159-165. https://doi.org/10.1007/s13131-019-1408-4

BLOOMER S., KOWALCZYK, WILLIAMS J., WASS T., and ENMOTO K. Compensation of magnetic data for autonomous underwater vehicle mapping surveys. In: 2014 IEEE/OES Autonomous Underwater Vehicles (AUV). Oxford, MS, 2014: 1-4. DOI: 10.1109/AUV.2014.7054417.

ALI A., AHMED S.F., NAQVI S.Y.R., and JOYO M.K. Efficient Maneuvering and Control Designing of Unmanned Underwater Vehicle (UUV). Sindh University Research Journal (Science Series), 2018, 50 (3D): 95-100. http://sujo2.usindh.edu.pk/index.php/SURJ/article/view/52

OKAMOTO A., SETA T., SASANO M., INOUE S., and URA T. Visual and Autonomous Survey of Hydrothermal Vents Using a Hovering‐Type AUV: Launching Hobalin into the Western Offshore of Kumejima Island. Geochemistry, Geophysics, Geosystems, 2019, 12(2): 6234-6243. https://doi.org/10.1029/2019GC008406

MATSUDA T., MAKI T., and SAKAMAKI T. Accurate and Efficient Seafloor Observations with Multiple Autonomous Underwater Vehicles: Theory and Experiments in a Hydrothermal Vent Field. IEEE Robotics and Automation Letters, 2019, 4(3): 2333-2339. DOI: 10.1109/LRA.2019.2902744.

GARG A., PASCOAL S., and AFZULPURKAR S. Heuristics-based Adaptive Biased Random Walk Algorithm for Chemical Source Localization using AUVs. In: Proceedings of the OCEANS 2019 MTS/IEEE Conference. Seattle, WA, USA, 2019: 1-6. DOI: 10.23919/OCEANS40490.2019.8962882.

RAHADIAN A., IRFAN M., YORDAN A., WIGUNA T., and BACHIR O. Application of Seafloor Mapping Technology for Search and Rescue: AirAsia QZ8501 Case Study. Indonesian Journal of Physics, 2015, 26(2): 22-25.

SUNG M., CHO H., KIM T., JOE H., and YU S. Crosstalk Removal in Forward Scan Sonar Image Using Deep Learning for Object Detection. IEEE Sensors Journal, 2019, 19(21): 9929-9944. DOI: 10.1109/JSEN.2019.2925830.

HONG S., and KIM J. Three-dimensional Visual Mapping of Underwater Ship Hull Surface Using Piecewise-planar. SLAM. International Journal of Control, Automation, and Systems, 2020, 18: 564-574. https://doi.org/10.1007/s12555-019-0646-8

NORNES S.M., LUDVIGSEN M., ODEGÅRD O., and SØRENSEN A.J. Underwater Photogrammetric Mapping of Intact Standing Steel Wreck with ROV. IFAC Papers Online, 2015, 48: 206-211.

LEHARDY K., and MOORE C. Deep-ocean search for Malaysia airlines flight 370. In: 2014 Oceans Conference, St. John's, Newfoundland, Canada, 2014: 1-4. DOI: 10.1109/OCEANS.2014.7003292.

DAMOUR M., CHURCH R., WARREN D., and HORRELL C. Utilizing 3D Optical and Acoustic Scanning Systems to Investigate Impacts from the Deepwater Horizon Oil Spill on Historic Shipwrecks. In: Offshore Technology Conference, 2019: 1-13.

ADAMS L.D., and WHITE D.A. Technical overview of a safe, configurable, pressure tolerant, subsea lithium ion battery system for oil and gas deep water fields. In: Proceedings of the OCEANS Conference, 2013: 1-8.

ABS. Use of Lithium-Ion batteries in the marine and offshore industries. American Bureau of Shipping (ABS), 2022.

RUTHERFORD K., and DOERFFEL D. Performance of lithium-polymer cells at high hydrostatic pressure. In: Proceedings of Unmanned Untethered Submersible Technolology Conference, 2005.

MITSUBISHI LTD. Fuel Cell AUV Urashima. Technological Review, 2006, 43(1). http://www.mhi.co.jp/technology/review/pdf/e431/e431024.pdf

KONGSBERG. Maritime AS Autonomous Underwater Vehicle—AUV: The HUGIN Family. 2021. https://www.kongsberg.com/globalassets/maritime/km-products/product-ocuments/huginfamily-of-auvs

ZUO Y., KANG L., and WANG K. An ultra-high special energy Mg-Ni seawater battery. Chemical Physics Letters, 2022, 803. DOI: 10.1016/j.cplett.2022.139852.

MATHESON R. Batteries that “drink” seawater could power long-range underwater vehicles. MIT News Office, 2017.

GENERAL DYNAMICS MISSION SYSTEMS. Bluefin 1.5 kWh subsea battery. 2018. https://gdmissionsystems.com/products/underwater-vehicles/bluefin-robotics/1-5-kwh-subsea-battery

PAGE B.R. Design of a mobile underwater charging system. Michigan Technological University, 2016. https://digitalcommons.mtu.edu/cgi/viewcontent

U.S. DEPARTMENT OF ENERGY. Underwater Vehicle Charging: Autonomous Underwater Vehicles, Unmanned Underwater Vehicles, and Remotely Operated Vehicles. https://www.energy.gov/sites/default/files/2019/09/f66/73355-3.pdf

CRIMMINS D., PATTY C.T., BELIARD M.A., and BAKER J. Long-endurance test results of the solar-powered AUV system. In: Proceedings of the OCEANS Conference, 2006: 1-5. http://dx.doi.org/10.1109/OCEANS.2006.306997

RÖHR J.A., SARTOR B.E., DUENOW J.N., QIN Z., MENG J., LIPTON J., MACLEAN S.A., RÖMER U., NIELSEN M., ZHAO S., KONG J., REESE M.O., STEINER M.A., EKINS-DAUKES N.J., and TAYLOR A.D. Identifying optimal photovoltaic technologies for underwater applications. iScience, 2022, 25(7): 104531. https://doi.org/10.1016/j.isci.2022.104531

SEZGIN B., DEVRIM Y., OZTURK, T., and EROGLU I. Hydrogen Energy Systems for Underwater Applications. International Journal of Hydrogen Energy, 2022, 47(45): 19780-19796. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125116586&origin=inward

SHIZUNO K., YOSHIDA S., TANOMURA M., and HAMA Y. Long distance high efficient underwater wireless charging system using dielectric-assist antenna. In: Proceedings of the OCEANS Conference, 2014: 1-3.

URANO M., ATA K., and TAKAHASHI A. Study on underwater wireless power transfer via electric coupling with a submerged electrode. In: Proceedings of the IEEE International Meeting on Future Electron Devices. Kansai, 2017: 36-37.

GUSSEN C.M.G., DINIZ P.S.R., CAMPOS, M.L.R., MARTINS, W.A., COSTA, F.M., and GOIS, J.N. A Survey of Underwater Wireless Communication Technologies. Journal of Communication and Information Systems, 2016, 31(1). https://doi.org/10.14209/jcis.2016.22

PALMEIRO A., MARTÍN M., CROWTHER I., and RHODES M. Underwater radio frequency communications. In: Proceedings of the OCEANS 2011 IEEE Conference. Spain, 2011: 1-8. DOI: 10.1109/Oceans-Spain.2011.6003580.

SAHU G., and PAWAR S.S. IOT-Based Underwater Wireless Communication. In: Innovations in Computer Science and Engineering, Proceedings of 8th ICICSE, 2021: 33-41.

CHITRE M., SHAHABUDEEN S., FREITAG L., and STOJANOVIC M. Recent advances in underwater acoustic communications & networking, In: Proceedings of the OCEANS Conference, 2008: 1-10. DOI: 10.1109/OCEANS.2008.5289428.

ZENG Z., FU S., ZHANG H., DONG Y., and CHENG J. A Survey of Underwater Optical Wireless Communications. IEEE Communications Surveys & Tutorials, 2017, 19 (1): 204-238. DOI: 10.1109/COMST.2016.2618841.

ALI M.F., JAYAKODY D.N.K., CHURSIN Y.A., AFFES S., and SONKIN D. Recent Advances and Future Directions on Underwater Wireless Communications. Archives of Computational Methods in Engineering, 2020, 27: 1379-1412. https://doi.org/10.1007/s11831-019-09354-8

HOLTZHAUSEN S. Design of an Autonomous Underwater Vehicle: Vehicle Tracking and Position Control. University of Kwazulu-Natal, 2010.

FOSSEN T. Guidance and Control of Ocean Vehicles. 2nd ed. 1994, John Wiley and Sons, New York.

WANG W.H., ENGELAAR R.C., CHEN X.Q., and CHASE J.G. The State-of-Art of Underwater Vehicles – Theories and Applications. In: Mobile Robots – State of The Art in Land, Sea, Air, and Collaborative Missions. I-Tech Education and Publishing, Vienna, 2009: 129-152. http://dx.doi.org/10.5772/6992

KINSEY J.C., EUSTICE R.M., and WHITCOMB L.L. A Survey of Underwater Vehicle Navigation: Recent Advances and New Challenges. In: IFAC Conference of Manoeuvering and Control of Marine Craft. 2006.

NICHOLSON J.W., and HEALEY A.J. The Present State of Autonomous Underwater Vehicle (AUV) Applications and Technologies. Marine Technology Society Journal, 2008. 42(1): 44-51.

GONZALEZ L.A. Design, Modelling and Control of an Autonomous Underwater Vehicle. School of Electrical, Electronic and Computer Engineering. University of Western Australia, 2004, 156.

IMCA. Deep Water Acoustic Positioning. The International Marine Contractors Association (IMCA), 2009. http://www.imca-int.com

VASILIJEVIC A., BOROVIC B., and VUKIC Z. Underwater Vehicle Localization with Complementary Filter: Performance Analysis in the Shallow Water Environment. Journal of Intelligent & Robotic Systems, 2012, 68: 373-386. https://doi.org/10.1007/s10846-012-9766-6

YE P., ZHAI C., DU G., and ZHAN X. Experiment Evaluation of Rapid Error Compensation for Magnetic Compass in Underwater Vehicle. In: IEEE International Conference on Mechatronics and Automation, 2009. http://dx.doi.org/10.1109/ICMA.2009.5246065

STUTTERS L., LIU H., TILTMAN C., and BROWN D.J. Navigation Technologies for Autonomous Underwater Vehicles. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 38(4): 581-589.

KIM B., LEE P.-M., JUN B.-H., and PARK J.-Y. Design and Implementation of Control Architecture for the ISiMI6000 Autonomous Underwater Vehicle. In: Autonomous Underwater Vehicles (AUV) IEEE/OES Conference. 2012.

MEYSTEL A.M., and ALBUS J.S. Intelligent Systems: Architecture, Design, and Control. John Wiley & Sons, Inc., 2000.

CARRERAS M., BATLLE J., RIDAO P., and ROBERTS G.N. An Overview on Behaviour-Based Methods for AUV Control. In: 5th IFAC Conference on Manoeuvring and Control of Marine Crafts. Citeseer, 2000.

ALAMI R., CHATILA R., FLEURY S., GHALLAB M., and INGRAND F. An Architecture for Autonomy. The International Journal of Robotics Research, 1998, 17(4): 315-337.

VALAVANIS, K., GRACANIN D., MATIJASEVIC M., KOLLURU R., and DEMETRIOU G.A. Control Architectures for Autonomous Underwater Vehicles. Control Systems, 1997, 17(6): 48-64.

RIDAO P., YUH J., BATLLE J., and SUGIHARA K. On AUV Control Architecture. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000.

KIM T.W., and YUH J. Development of a Real-Time Control Architecture for A Semi-Autonomous Underwater Vehicle for Intervention Missions. Control Engineering Practice, 2004, 12(12): 1521-1530.

MCGANN C., RAJAN K., THOMAS H., HENTHORN R., and MCEWEN R. T-Rex: A Model-Based Architecture for AUV Control. In: 3rd Workshop on Planning and Plan Execution for Real-World Systems, 2007.

WHITE B.A. Robust Control of an Unmanned Underwater Vehicle. In: Proceedings of the 37th IEEE Conference on Decision and Control, 1998.

KOH T.H., LAU M.W.S., LOW E., SEET G., SWEI S., and CHENG P.L. A Study of the Control of an Underactuated Underwater Robotic Vehicle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002.

FJELLSTAD O.-E., and FOSSEN T.I. Positionand Attitudetracking of AUV’s: A Quaternion Feedback Approach. IEEE Journal of Oceanic Engineering, 1994, 19: 512-518.

FENG Z., and ALLEN R. Reduced Order H∞ Control of an Autonomous Underwater Vehicle. Control Engineering Practice, 2004, 12(12): 1511-1520.

FRYXELL D., OLIVERIA P., PASCOAL A., SILVESTRE C., and KAMINER I. Navigation, Guidance and Control of AUVs: An Application to the Marius Vehicles. Control Engineering Practice, 1996, 4(3): 401-409.

PISANO A., and USAI E. Output-Feedback Control of an Underwater Vehicle Prototype by Higher-Order Sliding Modes. Automatica, 2004, 40(9): 1525-1531.

HEALEY A.J., and LIENARD D. Multivariable Sliding Mode Control for Autonomous Diving and Steering of Unmanned Underwater Vehicles. IEEE Journal of Oceanic Engineering, 1993, 18(3): 327-339.

VUILMET C. High Order Sliding Mode Control Applied to a Heavyweight Torpedo. In: Proceedings of 2005 IEEE Conference on Control Applications, 2005.

ANG K.H., CHONG G., and LI Y. PID Control System Analysis, Design, and Technology. IEEE Transactions on Control Systems Technology, 2005, 13(4): 559-576.

COMINOS, and MUNRO N. PID Controllers: Recent Tuning Methods and Design to Specification. In: IEEE Proceedings – Control Theory and Applications, 2002, 149(1): 46-53.

SILPA-ANAN C. Autonomous Underwater Robot: Vision and Control. Citeseer, 2001.

OGATA K. Modern Control Engineering. 4th ed. Prentice Hall, 2001.

LEQUIN O., GEVERS M., MOSSBERG M., BOSMANS E., and TRIEST L. Iterative Feedback Tuning of PID Parameters: Comparison with Classical Tuning Rules. Control Engineering Practice, 2003, 11(9): 1023-1033.

ALVAREZ A., CAFFAZ A., CAITI A., CASALINO G., GUALDESI L., TURETTA A., and VIVIANI R. Folaga: A Low-Cost Autonomous Underwater Vehicle Combining Glider and AUV Capabilities. Ocean Engineering, 2009, 36(1): 24-38.

WILLIAMS, S.B., NEWMAN P., DISSANAYAKE G., ROSENBLATT J., and DURRANT-WHYTE H. A Decoupled, Distributed AUV Control Architecture. In: International Symposium on Robotics, 2000.

ROSENBLATT J.K. Damn: A Distributed Architecture for Mobile Navigation. Journal of Experimental & Theoretical Artificial Intelligence, 1997, 9(2-3): 339-360.

JALVING B. The NDRE-AUV Flight Control System. IEEE Journal of Oceanic Engineering, 1994, 19(4): 497-501.

LEA R.K., ALLEN R., and MERRY S.L. A Comparative Study of Control Techniques for an Underwater Flight Vehicle. International Journal of Systems Science, 1999, 30(9): 947-964.

CHELLABI A., and NAHON M. Feedback Linearization Control of Undersea Vehicles. In: Proceedings of the Oceans'93 Conference: Engineering in Harmony with Ocean, IEEE, 1993.

TREBI-OLLENNU A., and WHITE B.A. Non-Linear Robust Control Designs for a Remotely Operated Underwater Vehicle Depth Control System. Journal of Systems and Control Engineering, 1996, 210(3): 201-214.

SMALLWOOD D.A. and WHITCOMB L.L. Model-Based Dynamic Positioning of Underwater Robotic Vehicles: Theory and Experiment. IEEE Journal of Oceanic Engineering, 2004, 29(1): 169-186.

SANTHAKUMAR M., and ASOKAN T. A Self-Tuning Proportional-Integral-Derivative Controller for an Autonomous Underwater Vehicle Based on Taguchi Method. Journal of Computer Science, 2010, 6(8): 862-871.

RODRIGUES, L., TAVARES, and DE SOUSA PRADO M.G. Sliding Mode Control of an AUV In The Diving and Steering Planes. In: Proceedings of the Oceans'96 MTS/IEEE Conference: Prospects for the 21st Century, 1996.

MARCO, D.B., HEALEY A.J., MCGHEE R.B., BRUTZMAN D.P., and CRISTI R. Control Systems Architecture, Navigation, and Communication Research Using the NPS Phoenix Underwater Vehicle. Defense Technical Information Center, 2005.

RIEDE J.S., and HEALEY A.J. Shallow Water Station Keeping of AUVs Using Multi-Sensor Fusion for Wave Disturbance Prediction and Compensation. In: Oceans'98 Conference Proceedings. IEEE, 1998.

ABDELLILAH H., BOUHAMIDA M., ABDELLAH M., MIHOUB Y., and REDA A. Depth advanced control of an autonomous underwater robot. International Journal of Modelling, Identification and Control, 2016, 26: 336. DOI: 10.1504/IJMIC.2016.081134

SIDE Z., and JUNKU Y. Experimental Study on Advanced Underwater Robot Control. IEEE Transactions on Robotics, 2005, 21(4): 695-703.

RIEDEL J.S. Shallow Water Stationkeeping of an Autonomous Underwater Vehicle: The Experimental Results of A Disturbance Compensation Controller. In: Oceans 2000 MTS/IEEE Conference and Exhibition, 2000.

MARCO D.B., and HEALEY A.J. Command, Control, and Navigation Experimental Results with the NPS Aries AUV. IEEE Journal of Oceanic Engineering, 2001, 26(4): 466-476.

INNOCENTI M., and CAMPA G. Robust Control of Underwater Vehicles: Sliding Mode vs. LMI Synthesis. In: Proceedings of the 1999 American Control Conference, IEEE, 1999.

KAWAMURA A., OKANO T., and MURAKAMI T. A Control of Under Actuated AUV by Nonlinear Controller. In: 2019 IEEE/SICE International Symposium on System Integration, Paris, France, 2019: 295-300. DOI: 10.1109/SII.2019.8700367.

TAUBERT R., EICHHORN M., AMENT C., JACOBI M., KARIMANZIRA D., and PFÜTZENREUTER T. Model identification and controller parameter optimization for an autopilot design for autonomous underwater vehicles. In: OCEANS 2014 – Taipei, 2014: 1-9.

MUKHERJEE K., KAR I.N., and BHATT R.K. Adaptive gravity compensation and region tracking control of an AUV without velocity measurement. International Journal of Modelling, Identification and Control, 2016, 25: 154.

FISCHER N., HUGHES D., WALTERS E., SCHWARTZ M., and DIXON W.E. Nonlinear RISE-Based Control of an Autonomous Underwater Vehicle. IEEE Transactions on Robotics, 2014, 30(4): 845-852. DOI: 10.1109/TRO.2014.2305791.

FRYXELL D., OLIVEIRA P., PASCOAL A., and SILVESTRE C. Integrated Design of Navigation, Guidance and Control Systems for Unmanned Underwater Vehicles. In: Oceans 94/OSATES Conference on Oceans Engineering for Today's Technology and Tomorrow's Preservation, IEEE, 1994.

LICEAGA-CASTRO E., and VAN DER MOLEN G. A Submarine Depth Control System Design. International Journal of Control, 1995, 61(2): 279-308.

LICEAGA-CASTRO E., and VAN DER MOLEN G.M. Submarine H∞ Depth Control Under Wave Disturbances. IEEE Transatctions on Control Systems Technology, 1995, 3(3): 338-346.

FENG Z., and ALLEN R. H∞ Autopilot Design For Autonomous Underwater Vehicles. Journal of Shanghai Jiaotong University (Science), 2010, 15(2): 194-198.

Roche, É., SENAME O., SIMON D., and VARRIER S. A Hierarchical Varying Sampling H∞ Control of an AUV. In: 18th IFAC World Congress, Aug. 2011, Milan, Italy, 2011.

ROCHE E., SENAME O., and SIMON D. LFT/Hinfinity Varying Sampling Control for Autonomous Underwater Vehicles. In: 4th IFAC Symposium on System, Structure and Control, Sep. 2010, Ancona, Italy. 2010. https://necs.inrialpes.fr/people/simon/sssc10.pdf

PUTTIGE V.R. Neural Network Based Adaptive Control for Autonomous Flight of Fixed Wing Unmanned Aerial Vehicles. University of New South Wales, 2008.

ASTROM K.J., and WITTENMARK B. Adaptive Control. Addison-Wesley Longman Publishing Co., Inc., 1994.

WANG C.-H., LIU H.-L., and LIN T.-C. Direct Adaptive Fuzzy-Neural Control with State Observer and Supervisory Controller for Unknown Nonlinear Dynamical Systems. IEEE Transactions on Fuzzy Systems, 2002, 10(1): 39-49.

WANG L.-X. Adaptive Fuzzy Systems and Control- Design and Stability Analysis. Englewood Cliffs, NJ, Prentice Hall, 1994.

SANTHAKUMAR M., and KIM J. Modelling, Simulation and Model Reference Adaptive Control of Autonomous Underwater Vehicle-Manipulator Systems. In: Proceedings of the 11th International Conference on Control, Automation and Systems (ICCAS), IEEE. 2011.

DATTA A., and IOANNOU A. Performance Analysis and Improvement in Model Reference Adaptive Control. IEEE Transactions on Automatic Control, 1994, 39(12): 2370-2387.

WUXI S., and WEI H. Indirect Adaptive Fuzzy Control Based on Reference Error Adjustment. Control and Decision, 2000, 3: 005.

WU-XI S.H.I. Indirect Adaptive Fuzzy Control of the Adaptive Laws Modification. Systems Engineering and Electronics, 2005, 10: 033.

CAMPION G., and BASTIN G. Indirect Adaptive State Feedback Control of Linearly Parametrized Non-Linear Systems. International Journal of Adaptive Control and Signal Processing, 2007, 4(5): 345-358.

BESSA W.M., DUTRA M.S., and KREUZER E. An Adaptive Fuzzy Sliding Mode Controller for Remotely Operated Underwater Vehicles. Robotics and Autonomous Systems, 2010, 58(1): 16-26.

KIM H.-S., and SHIN Y.-K. Design of Adaptive Fuzzy Sliding Mode Controller Based on Fuzzy Basis Function Expansion for UFV Depth Control. International Journal of Control, Automation, and Systems, 2005, 3(2): 217-224.

KIM, H.-S., and SHIN Y.-K. Expanded Adaptive Fuzzy Sliding Mode Controller Using Expert Knowledge And Fuzzy Basis Function Expansion for UFV Depth Control. Ocean Engineering, 2007, 34(8): 1080-1088.

KODOGIANNIS V.S. Neuro-Control of Unmanned Underwater Vehicles. International Journal of Systems Science, 2006, 37(3): 149-162.

SHI Y., QIAN W., YAN W., and LI J. Adaptive Depth Control for Autonomous Underwater Vehicles Based on Feedforward Neural Networks. International Journal of Computer Science & Applications, 2007, 4: 107-118.

BRANDT R.D. and LIN F. Adaptive Interaction and Its Application to Neural Networks. Information Sciences, 1999, 121(3-4): 201-215.

SAIKALIS G., and LIN F. A Neural Network Controller by Adaptive Interaction. In: Proceedings of the 2001 American Control Conference, IEEE, 2001.

PHUNG-HUNG, N. and YUN-CHUL J. Control of Autonomous Underwater Vehicles Using Adaptive Neural Network. In: 2009 International Conference on Advanced Technologies for Communications, 2009.

KULJAČA O.J., GADEWADIKAR, and HORVAT K. Multilayer Neural Net Trajectory Tracking Control for Underwater Vehicle. Brodogradnja, 2009, 60(4): 388-394.

AMIN R., KHAYYAT A.A., and OSGOUIE K.G. Neural Networks Control of Autonomous Underwater Vehicle. In: 2010 2nd International Conference on Mechanical and Electronics Engineering (ICMEE), IEEE, 2010.

SANTORA M., ALBERTS J., and EDWARDS D. Control of Underwater Autonomous Vehicles Using Neural Networks. In: Proceedings of the Oceans 2006 IEEE Conference, 2006.

CAVALLETTI M., IPPOLITI G., and LONGHI S. Lyapunov-Based Switching Control Using Neural Networks for a Remotely Operated Vehicle. International Journal of Control, 2007, 80(7): 1077-1091.

ZHINWEI X., GAO J., WANG L., and FENG X. A Neural Network Based Adaptive Control Scheme For Underwater Vehicles with an Observer. In: Fifth World Congress on Intelligent Control and Automation, 2004: 4996.

FANG W., XU Y., WAN L., and LI Y. Real-Time Control of Autonomous Underwater Vehicles Based on Fuzzy Neural Network. In: International Workshop on Intelligent Systems and Applications, 2009.

NAUCK D., and KRUSE R. A Neuro-Fuzzy Method To Learn Fuzzy Classification Rules From Data. Fuzzy Sets and Systems, 1997, 89(3): 277-288.

QIN Z., and GU J. Adaptive Control of Autonomous Underwater Vehicle Based on Fuzzy Neural Network. Journal of Automation Mobile Robotics and Intelligent Systems, 2010, 4(1): 104-111.

SUTTON R., and CRAVEN J. The Anfis Approach Applied to AUV Autopilot Design. Neural Computing & Applications, 1998, 7(2): 131-140.

SHI, X., CHEN J., YAN Z., and LI T. Design of AUV Height Control Based on Adaptive Neuro-Fuzzy Inference System. In: 2010 IEEE International Conference on Information and Automation, 2010.

JAVADI-MOGHADDAM J., and BAGHERI A. An Adaptive Neuro-Fuzzy Sliding Mode Based Genetic Algorithm Control System for Under Water Remotely Operated Vehicle. Expert Systems with Applications, 2010, 37(1): 647-660.

HASSANEIN O., SALMAAN S., ANAVATTI S., and TAPABRATA R. ANFN controller based on differential evolution for Autonomous Underwater Vehicles. In: 1st International Conference on Innovative Engineering (ICIES2012), Alexanderia, Egypt, 5-7 Dec 2012.

LIANG X., LI Y., XU Y.-R., WAN L., and QIN Z.-B. Fuzzy Neural Network Control of Underwater Vehicles Based on Desired State Programming. Journal of Marine Science and Application, 2006, 5(3): 1-4.

HONG E.Y., SOON H.G., and CHITRE M. Depth control of an autonomous underwater vehicle. In: Proceedings of the STARFISH OCEANS'10 IEEE Conference. Sydney, 2010: 1-6. DOI: 10.1109/OCEANSSYD.2010.5603566.

YUAN C., LICHT S., and HE H. Formation Learning Control of Multiple Autonomous Underwater Vehicles With Heterogeneous Nonlinear Uncertain Dynamics. IEEE Transactions on Cybernetics, 2018, 48(10): 2920-2934. DOI: 10.1109/TCYB.2017.2752458.

WANG L., YAO B., and LIAN L. Real-Time Residual Buoyancy Identification for Deep-Sea Autonomous Vehicle. In: Proceedings of the 2018 OCEANS MTS/IEEE Techno-Oceans Conference. Kobe, 2018: 1-5. DOI: 10.1109/OCEANSKOBE.2018.8559451.

CUI R., YANG C., LI Y., and SHARMA S. Adaptive Neural Network Control of AUVs With Control Input Nonlinearities Using Reinforcement Learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(6): 1019-1029. DOI: 10.1109/TSMC.2016.2645699.

DODSON, THOMAS B, THOMAS M., GROTHUES, EILER J.H., DOBARRO J.A., and SHOME R. Acoustic‐telemetry payload control of an autonomous underwater vehicle for mapping tagged fish. Limnology and Oceanography: Methods, 2018, 16: 760-772.

XIANG X., YU C., and ZHANG Q. Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Computers & Operations Research, 2017, 84: 165-177. DOI: 10.1016/j.cor.2016.09.017.

ZHU D., HUANG H., and YANG S.X. Dynamic Task Assignment and Path Planning of Multi-AUV System Based on an Improved Self-Organizing Map and Velocity Synthesis Method in Three-Dimensional Underwater Workspace. IEEE Transactions on Cybernetics, 2013, 43(2): 504-514. DOI: 10.1109/TSMCB.2012.2210212.

CHU Z., and ZHU D. Adaptive sliding mode heading control for autonomous underwater vehicle including actuator dynamics. In: Proceedings of the OCEANS 2016 Conference. Shanghai, 2016: 1-5. DOI: 10.1109/OCEANSA2016.7485568.

KHODAYARI, HEDAYATI M., and BALOCHIAN S. Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller. Journal of Marine Science and Technology, 2015, 20: 559-578.

GUO J., LI D., and HE B. Intelligent Collaborative Navigation and Control for AUV Tracking. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1732-1741. DOI: 10.1109/TII.2020.2994586.

YIN J., and WANG N. Predictive Trajectory Tracking Control of Autonomous Underwater Vehicles Based on Variable Fuzzy Predictor. International Journal of Fuzzy Systems, 2020, 23(2). DOI: 10.1007/s40815-020-00898-7.

HERLAMBANG T., SUBCHAN, and NURHADI H. Navigation and guidance control system of UNUSAITS AUV based on dynamical system using ensemble kalman filter square root. Journal of Physics: Conference Series, 2020, 1538: 012030. 10.1088/1742-6596/1538/1/012030.

LV P., HE B., GUO J., SHEN Y., YAN T., and SHA Q. Underwater navigation methodology based on intelligent velocity model for standard AUV. Ocean Engineering, 2020, 202: 107073.

VENKATESH S.R., and DAHLEH M.A. On System Identification of Complex Systems from Finite Data. IEEE Transactions on Automatic Control, 2001, 46(2): 235-257.

SJÖBERG J., ZHANG Q., LJUNG L., BENVENISTE A., DELYON B., GLORENNEC P.-Y., HJALMARSSON H., and JUDITSKY A. Nonlinear Black-Box Modeling In System Identification: A Unified Overview. Automatica, 1995, 31(12): 1691-1724.

CHEN C. Using Immune Network In Nonlinear System Identification for a 3D Parallel Robot. Information Technology Journal, 2009, 8(6): 895-902.

KHALIK M.A., SHERIF M., SARAYA S., and AREED F. Parameter Identification Problem: Real-Coded Ga Approach. Applied Mathematics and Computation, 2007, 187(2): 1495-1501.

CHEN C. Using Immune Network In Nonlinear System Identification for a 3D Parallel Robot. Information Technology Journal, 2009, 8(6): 895-902.

MORGERA S.D., and ARMOUR B. Structured Maximum Likelihood Autoregressive Parameter Estimation. In: 1989 International Conference on Acoustics, Speech, and Signal Processing, IEEE, 1989.

SODERSTROM T., FAN H., CARLSSON B., and BIGI S. Least Squares Parameter Estimation of Continuous-Time Arx Models From Discrete-Time Data. IEEE Transactions on Automatic Control, 1997, 42(5): 659-673.

KIM J., KIM K., CHOI H.S., and LEE K.-Y. Estimation of Hydrodynamic Coefficients for an AUV Using Nonlinear Observers. IEEE Journal of Oceanic Engineering, 2002, 27(4): 830-840.

SALMAN S.A., PUTTIGE V.R., and ANAVATTI S.G. Real-Time Validation and Comparison of Fuzzy Identification and State-Space Identification for a Uav Platform. In: 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 2006.

LEE T.H., RA, W.S., YOON T.S., and PARK J.B. Robust Kalman Filtering Via Krein Space Estimation. IEEE Proceedings – Control Theory and Applications, 2004, 151(1): 59-63.

ABTAHI S.F., ALISHAHI M., and AZADI YAZDI E. Identification of roll dynamics of an autonomous underwater vehicle. Journal of Engineering for the Maritime Environment, 2019, 233: 1056-1067.

ABTAHI S.F., ALISHAHI M., and AZADI YAZDI E. Developing data fusion and recursive estimation methods for online identification of dive plane dynamics of an autonomous underwater vehicle. Journal of Engineering for the Maritime Environment, 2020, 234: 520-533.

MOUSAVIAN S.H., and KOOFIGAR H.R. Identification-Based Robust Motion Control of an AUV: Optimized by Particle Swarm Optimization Algorithm. Journal of Intelligent & Robotic Systems, 2017, 85: 331-352.

EBRAHIMI S., BOZORG, and ERNANI M.Z. Identification of an Autonomous Underwater M. Vehicle Dynamic Using Extended Kalman Filter with Arma Noise Model. International Journal of Robotics, 2015, 4(1): 22-28.

SABET M.T., DANIALI H.M., FATHI A., and ALIZADEH E. Identification of an Autonomous Underwater Vehicle Hydrodynamic Model Using the Extended, Cubature, and Transformed Unscented Kalman Filter. IEEE Journal of Oceanic Engineering, 2018, 43(2): 457-467. DOI: 10.1109/JOE.2017.2694470.

MIN F., PAN G., and XU, X. Modeling of Autonomous Underwater Vehicles with Multi-Propellers Based on Maximum Likelihood Method. Journal of Marine Science and Engineering, 2020, 8(6): 407.

WADI A., LEE J., and MUKHOPADHYAY S. Modeling and system identification of an autonomous underwater vehicle. In: 2018 11th International Symposium on Mechatronics and its Applications, Sharjah, 2018: 1-6. DOI: 10.1109/ISMA.2018.8330130.

KISELEV L., BAGNITCKII A., and MEDVEDEV A. Identification of AUV hydrodynamic characteristics using model and experimental data. Gyroscopy and Navigation, 2017, 8: 217-225. DOI: 10.1134/S2075108717030051.

SHEN C., SHI Y., and BUCKHAM B. Path-following control of an AUV using multi-objective model predictive control. In: 2016 American Control Conference (ACC), Boston, MA, 2016: 4507-4512. DOI: 10.1109/ACC.2016.7526062.

MANSOORZADEH S., and JAVANMARD E. An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (AUV) using computational and experimental fluid dynamics methods. Journal of Fluids and Structures, 2014, 51: 161-171. http://dx.doi.org/10.1016/j.jfluidstructs.2014.09.001

CAITI A., DI CORATO F., FABIANI F., FENUCCI D., GRECHI S., and PACINI F. Enhancing autonomy: Fault detection, identification and optimal reaction for over – Actuated AUVs. In: Proceedings of the OCEANS 2015 Conference. Genova, Genoa, 2015: 1-6. DOI: 10.1109/OCEANS-Genova.2015.7271755.

LJUNG L. System Identification. Willey Online Library, 1999.

LJUNG L. Perspectives on System Identification. Annual Reviews in Control, 2010, 34(1): 1-12.

HASSANEIN O., ANAVATTI S.G., HYUNGBO S., and SALMAN S.A. Auto-generating fuzzy system modelling of physical systems. In: 2015 IEEE Conference on Control Applications) 21-23 Sept. 2015. 2015: 1142-1147,

HASSANEIN O., ANAVATTI S., SHIM H., and RAY T. Model-Based Adaptive Control System For Autonomous Underwater Vehicles. Ocean Engineering, 2016, 127: 58-69.

WANG J.-S., and LEE C.S.G. Efficient Neuro-Fuzzy Control Systems for Autonomous Underwater Vehicle Control. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, 2001.

WANG L.X. Design and Analysis of Fuzzy Identifiers of Nonlinear Dynamic Systems. IEEE Transactions on Automatic Control, 1995, 40(1): 11-23.

LI L., YANG Y., and PENG H. Fuzzy System Identification via Chaotic Ant Swarm. Chaos, Solitons & Fractals, 2009, 41(1): 401-409.

NAEEM W. Model Predictive Control of An Autonomous Underwater Vehicle. In: Proceedings of UKACC 2002 Postgraduate Symposium, Sheffield, UK, Citeseer, 2002.

NAEEM W., SUTTON R., and AHMAD S.M. Pure Pursuit Guidance and Model Predictive Control of an Autonomous Underwater Vehicle for Cable/Pipeline Tracking. The Institute of Marine Engineering, Science and Technology, 2004. https://www.researchgate.net/publication/228772629_Pure_pursuit_guidance_and_model_predictive_control_of_an_autonomous_underwater_vehicle_for_cablepipeline_tracking

MARTIN S.C., and WHITCOMB L.L. Preliminary Results in Experimental Identification of 3-D of Coupled Dynamical Plant for Underwater Vehicles. In: Proceedings of IEEE/MTS OCEANS 2008, Quebec City, Canada, 15–18 September 2008.

HEGRENSE O., HALLINGSTAD O., and JALVING B. Comparison of Mathematical Models For The HUGIN 4500 AUV Based on Experimental Data. In: Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, IEEE, 2007. [228] TIANO, A., SUTTON R., LOZOWICKI A., and NAEEM W. Observer Kalman Filter Identification of an Autonomous Underwater Vehicle. Control Engineering Practice, 2007, 15(6): 727-739.

HEALEY A.J. Model Based Predictive Control of AUVs for Station Keeping In: A Shallow Water Wave Environment, 2005.

PETRICH J., NEU W.L., and STILWELL D.J. Identification of A Simplified AUV Pitch Axis Model For Control Design: Theory and Experiments. In: Oceans 2007. IEEE, 2007. https://doi.org/10.1109/OCEANS.2007.4449350

CONTE G., ZANOLI S.M., SCARADOZZI D., and CONTI A. Evaluation of Hydrodynamics Parameters of an UUV: A Preliminary Study. In: First International Symposium on Control, Communications and Signal Processing, IEEE, 2004.

FARUQ A., ABDULLAH S.S., FAUZI M., and MOHD NOR S.H. Optimization of Depth Control For Unmanned Underwater Vehicle Using Surrogate Modeling Technique. In: 2011 4th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 2011.

TIANO A. Comparison of Non Linear Identification Methods for Underwater Vehicles. In: First International Symposium on Control, Communications and Signal Processing, IEEE, 2004.

AKKIZIDIS I.S., and ROBERTS G.N. Fuzzy Modelling and Fuzzy-Neuro Motion Control of An Autonomous Underwater Robot. In: 1998 5th International Workshop on Advanced Motion Control, IEEE, 1998.

BABUŠKA R., and VERBRUGGEN H.B. An Overview of Fuzzy Modeling for Control. Control Engineering Practice, 1996, 4(11): 1593-1606.

ISHII K., URA T., and FUJII T. A Feedforward Neural Network for Identification and Adaptive Control of Autonomous Underwater Vehicles. In: 1994 IEEE World Congress on Computational Intelligence Neural Networks, 1994.

ISHII K., FUJII T., and URA T. A Quick Adaptation Method. In: A Neural Network Based Control System For AUVs. In: Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology, IEEE, 1994.

ISHII K., FUJII T., and URA T. An on-Line Adaptation Method in A Neural Network Based Control System for AUVs. IEEE Journal of Oceanic Engineering, 1995, 20(3): 221-228.

ISHII K., FUJII T., and URA T. Neural Network System For online Controller Adaptation and Its Application to Underwater Robot. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, IEEE, 1998.

SAYYAADI H., and URA T. Multi Input-Multi Output System Identification of AUV Systems by Neural Network. In: Proceedings of the Oceans'99 MTS/IEEE Conference: Riding the Crest into the 21st Century. IEEE, 1999.

VAN DE VEN P.W.J., JOHANSEN T.A., SØRENSEN A.J., FLANAGAN C., and TOAL D. Neural Network Augmented Identification of Underwater Vehicle Models. Control Engineering Practice, 2007, 15(6): 715-725.

SIMBULAN K.B., SIMBULAN K.B., DAVID K.K., VICERRA R.R.P., ATIENZA R., and DADIOS E.P. A Neural Network Model for a 5-Thruster Unmanned Underwater Vehicle. In: Tencon 2012–2012 IEEE Region 10 Conference, 2012.

HASSANEIN O., ANAVATTI S., and RAYIMPROVED T. Fuzzy Neural Modeling for Underwater Vehicles. International Journal of World Academy of Science, Engineering and Technology, 2012, 71: 1208-1214.

NAUCK D., KLAWONN F., and KRUSE R. Foundations of Neuro-Fuzzy Systems. John Wiley & Sons, Inc., 1997.

SUN, F., SUN Z., and LI L. Neuro-Fuzzy Adaptive Control Based on Dynamic Inversion for Robotic Manipulators. Fuzzy Sets and Systems, 2003, 134(1): 117-133.

CHUNSHIEN L., and CHUN-YI L. Self-Organizing Neuro-Fuzzy System for Control of Unknown Plants. IEEE Transactions on Fuzzy Systems, 2003, 11(1): 135-150.

ZHANG L., PANG Y., WAN L., and LI Y. Fuzzy Neural Network Control of AUV Based on IPSO. In: 2008 IEEE International Conference on Robotics and Biomimetics, 2009.

BOSSLEY K.M., BROWN M., and HARRIS C.J. Neurofuzzy Identification of An Autonomous Underwater Vehicle. International Journal of Systems Science, 1999, 30(9): 901-913.

BABUŠKA R., and VERBRUGGEN H. Neuro-Fuzzy Methods for Nonlinear System Identification. Annual Reviews in Control, 2003, 27(1): 73-85.

CERVANTES J., YU W., SALAZAR S., and CHAIREZ I. Takagi-Sugeno Dynamic Neuro-Fuzzy Controller of Uncertain Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 2017, 25(6): 1601-1615. DOI: 10.1109/TFUZZ.2016.2612697.

OLIVEIRA G.H.C., CAMPELLO R., and AMARAL W.C. Fuzzy Models within Orthonormal Basis Function Framework. In: Proceedings of the 1999 IEEE International Fuzzy Systems Conference, 1999.

ALCI M., and ASYALI M.H. Nonlinear System Identification via Laguerre Network Based Fuzzy Systems. Fuzzy Sets and Systems, 2009, 160(24): 3518-3529.

HASSANEIN O., ANAVATTI S., and RAY T. Black-Box Tool for Nonlinear System Identification Based Upon Fuzzy System. International Journal of Computational Intelligence and Applications, 2013, 12(2).

PAPADAKIS S.E., and THEOCHARIS J.B. A Ga-Based Fuzzy Modeling Approach for Generating TSK Models. Fuzzy Sets and Systems, 2002, 131(2): 121-152.

SHEN Q., and CHOUCHOULAS A. A Rough-Fuzzy Approach for Generating Classification Rules. Pattern Recognition, 2002, 35(11): 2425-2438.

SALEHFAR H., BENGIAMIN N., and HUANG J. A Systematic Approach to Linguistic Fuzzy Modeling Based on Input-Output Data. In: Proceedings of the Simulation Conference, IEEE, 2000.

SOUKKOU A., KHELLAF A., and LEULMI S. Systematic Design Procedure of Ts-Type Fuzzy Controllers. International Journal of Computational Intelligence and Applications, 2006, 6(04): 531-549.

HARRIS C.J., and GAN Q. State Estimation And Multi-Sensor Data Fusion Using Data-Based Neurofuzzy Local Linearisation Process Models. Information Fusion, 2001, 2(1): 17-29.

CHEN Y., WANG W., and XU G. System identification of AUV hydrodynamic model based on support vector machine. In: 2017 IEEE 7th International Conference on Underwater System Technology: Theory and Applications, Kuala Lumpur, 2017: 1-7. DOI: 10.1109/USYS.2017.8309465.

CHOU Y., NAKAJIMA M., HSIAO K., and CHEN H. Experimental Identification of Surge Motion Hydrodynamic Coefficients for an AUV Using Laser Line Scanning and Genetic Algorithm. In: Proceedings of the 2018 OCEANS MTS/IEEE Techno-Oceans Conference, Kobe, 2018: 1-5. DOI: 10.1109/OCEANSKOBE.2018.8559119.


Refbacks

  • There are currently no refbacks.