Characterization of Non-Orientable Surfaces Using GeoGebra

Pedro Pablo Cárdenas Alzate, Fabián Toledo Sánchez, Carlos Alberto Abello Muñoz

Abstract

In this article, a study of the fundamental characteristics of non-orientable surfaces is conducted using GeoGebra. This software is an excellent means to experiment, explore, discover, visualize, and manipulate mathematical objects in a teaching-learning process. This article presents and describes concepts and characteristics of the Mobius band and Klein bottle, which are animated by GeoGebra through the use of sliders, which allow the learning environment to be dynamized to visualize their properties and characteristics. The results of this research provide fundamental tools for non-orientable surfaces through the use of the GeoGebra dynamizing environment, which allows multiple representations of the presented subject matter.

 

Keywords: non-orientable surfaces, the Klein bottle, the Mobius band, mathematics, the GeoGebra software.

 

https://doi.org/10.55463/issn.1674-2974.50.11.3

 

 


Full Text:

PDF


References


COLIN A., & ROBERT F. Introduction to topology: pure and applied. Pearson Prentice Hall, New Delhi, 2009.

BOMBAL F., RODRÍGUEZ L., and VERA G. Problemas de análisis matemático: espacios métricos y normados. AC, Madrid, 1982.

MUNKRES J. Topología. 2nd ed. Prentice Hall, 2002.

IRIBARREN I. Topología de Espacios Métricos. Limusa, 2010.

TOLEDO SÁNCHEZ F. La topología de espacios métricos animada con GeoGebra. Tesis de Maestria en enseñanza de las Matemáticas, Universidad Tecnologica de Pereira, 2017. https://hdl.handle.net/11059/8697

TOLEDO SÁNCHEZ F., CÁRDENAS ALZATE P. P., and ABELLO MUÑOZ C. A. An Approach to the Notions of the Topology of Metric Spaces through Animations in GeoGebra. International Journal of Engineering Research and Technology, 2021, 14(12): 1179-1190. http://irphouse.com/ijert21/ijertv14n12_03.pdf

GODOY VILLANUEVA C. M. Papel y Lápiz y Programas de Geometría Dinámica en el aprendizaje de conceptos geométricos y su aplicación a resolución de problemas. Master’s thesis, Universitat Autónoma de Barcelona, 2011. https://www.uab.cat/servlet/BlobServer?blobtable=Document&blobcol=urldocument&blobheader=application/pdf&blobkey=id&blobwhere=1331797233865&blobnocache=true=

ARCAVI A. The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 2003, 52(3): 215-241. https://doi.org/10.1023/A:1024312321077

ÁVILA P. Razonamiento covariacional a través de software dinámico. El caso de la variación lineal y cuadrática. Trabajo de Maestría, Universidad Nacional de Colombia, Medellín, 2012. https://repositorio.unal.edu.co/handle/unal/9757

ESPINA P. GeoGebra. Revista de didáctica de las matemáticas, 2006, 69: 19-24.

SÜMMERMANN M. L., SOMMERHOFF D., and ROTT B. Mathematics in the Digital Age: The Case of Simulation-Based Proofs. International Journal of Research in Undergraduate Mathematics Education, 2021, 7: 438–465. https://doi.org/10.1007/s40753-020-00125-6

BENNING I. Enacting core practices of effective mathematics pedagogy with GeoGebra. Mathematics Teacher Education and Development, 2021, 23(2): 101–127. https://mted.merga.net.au/index.php/mted/article/view/586

HERNÁNDEZ A., PERDOMO DÍAZ J., and CAMACHO MACHÍN M. Mathematical understanding in problem solving with GeoGebra: a case study in initial teacher education. International Journal of Mathematical Education in Science and Technology, 2020, 51(2): 208–223. https://doi.org/10.1080/0020739X.2019.1587022

PIRKLOVÁ P., BÍMOVÁ D., and BÍMOVÁ D. Metric problems in monge projection in Geogebra. 18th Conference on Applied Mathematics, 2019, 2: 949–958.

VELEZMORO-LEÓN R., FARIAS-MORCILLO N. J., IPANAQUÉ-CHERO R., ESTELA-VILELA J. M., and JIMÉNEZ-VILCHERREZ J. K. A Parameterization of the Klein Bottle by Isometric Transformations in R4 with Mathematica. In: GERVASI O., MURGANTE B., MISRA S., GARAU C., BLEČIĆ I., TANIAR D., APDUHAN B. O., ROCHA A. M. A. C., TARANTINO E., and TORRE C. M. (eds.) Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), Vol. 12949. Cham: Springer, 2021: 261–272. https://doi.org/10.1007/978-3-030-86653-2_19

PUTZ M. V., & ORI O. Topological Symmetry Transition between Toroidal and Klein Bottle Graphenic Systems. Symmetry, 2020, 12(8): 1233. https://doi.org/10.3390/sym12081233

DAVIS D. M. An n-dimensional Klein bottle. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2019, 149(5): 1207–1221. https://doi.org/10.1017/prm.2018.73

COHEN D. C., & VANDEMBROUCQ L. Topological complexity of the Klein bottle. Journal of Applied and Computational Topology, 2017, 1(2): 199–213. https://doi.org/10.1007/s41468-017-0002-0

HIDBER C. E., & XICOTÉNCATL M. A. Characteristic classes of Klein bottle bundles. Topology and Its Applications, 2017, 220: 1–13. https://doi.org/10.1016/j.topol.2017.01.026

EL MIR C., & LAFONTAINE J. Higher dimensional Möbius bands and their boundaries. Manuscripta Mathematica, 2019, 160(1-2): 187–198. https://doi.org/10.1007/s00229-018-1040-1

CHEN Y.-C., & FRIED E. Möbius bands, unstretchable material sheets and developable surfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2192): 20160459. https://doi.org/10.1098/rspa.2016.0459


Refbacks

  • There are currently no refbacks.