A Review of the Internet of Things and Deep Learning in Agriculture: A Smart Agriculture Prespective
Abstract
The artificial intelligence revolution in smart agriculture raises many challenges and opportunities for researchers. The adoption of modern technologies in agriculture has led to very high results compared to the last few decades. IoT technologies in agriculture have brought many new trends in monitoring the status of crops that can lead to monitoring the real-time environment and parameters that directly impact crop yield. The weather, soil, and plant monitoring can determine the exact crucial conditions for crops. Deep learning methods help intelligent disease detection and classification from the learned image dataset. The sub-field of artificial intelligence (deep learning) can structure algorithms in layers to develop artificial neural network learning and make intelligent decisions. Deep transfer learning attempts to solve the problem of the learned model that performs a task and to modify the experimental model to solve another task. This study aims to review agriculture technologies related to the literature, applications, and challenges. IoT and deep learning from the agriculture perspective are the primary focus of this study.
Keywords: deep learning, smart agriculture, Internet of Things.
Full Text:
PDFReferences
GOEL R.K., YADAV C.S., VISHNOI S., and RASTOGI R. Smart agriculture – Urgent need of the day in developing countries. Sustainable Computing: Informatics and Systems, 2021, 30, 100512. DOI: 10.1016/j.suscom.2021.100512.
KASHYAP P.K., KUMAR S., JAISWAL A., PRASAD M., and GANDOMI A.H. Towards Precision Agriculture: IoT-Enabled Intelligent Irrigation Systems Using Deep Learning Neural Network. IEEE Sensors Journal, 2021, 21(16): 17479-17491. DOI: 10.1109/JSEN.2021.3069266.
RAO U.S, SWATHI R., SANJANA V., ARPITHA L., CHANDRASEKHAR K., CHINMAYI, and NAIK P.K. Deep Learning Precision Farming: Grapes and Mango Leaf Disease Detection by Transfer Learning. Global Transitions Proceedings, 2021, 2(2): 535-544. DOI: 10.1016/j.gltp.2021.08.002.
PRASAD R., DEO R.C., LI Y., and MARASENI T. Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridizer algorithm approach. Catena, 2019, 177: 149-166. DOI: 10.1016/j.catena.2019.02.012.
MONTEIRO A., SANTOS S., and GONÇALVES P. Precision agriculture for crop and livestock farming – Brief review. Animals, 2021, 11(8): 1-18. DOI: 10.3390/ani11082345.
CRANE-DROESCH A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters, 2018, 13(11). DOI: 10.1088/1748-9326/aae159.
KAMATH P., PATIL P., and SUSHMA S.S. Crop yield forecasting using data mining. Global Transitions Proceedings, 2021, 2(2): 402-407. DOI: 10.1016/j.gltp.2021.08.008.
MUMBI A.W., and WATANABE T. Cost Estimations of Water Pollution for the Adoption of Suitable Water Treatment Technology. Sustainability, 2022, 14(2): 1-16. DOI: 10.3390/su14020649.
HASSAN S.M., MAJI A.K., JASIŃSKI M., LEONOWICZ Z., and JASIŃSKA E. Identification of plant-leaf diseases using CNN and transfer-learning approach. Electronics, 2021, 10(12), 1388. DOI: 10.3390/electronics10121388.
RAJAPAKSHA T.T., ALEXANDER A., FERNANDO L., THAN A., and NGUYEN L.H. Real-Time Weather Monitoring and IoT-Based Palmtop Device for Smart Agriculture. SN Computer Science, 2022, 3, Article number: 91. DOI: 10.1007/s42979-021-00961-6.
MIN Y., and HTUN N.C. Plant Leaf Disease Detection and Classification Using Image Processing. International Journal of Research and Engineering, 2018, 5(9): 516-523.
SRINIDHI V.V., SAHAYM A., and DEEBA K. Plant Pathology Disease Detection in Apple Leaves Using Deep Convolutional Neural Networks: Apple Leaves Disease Detection using EfficientNet and DenseNet. In: 2021 5th International Conference on Computing Methodologies and Communication (ICCMC) 08-10 April 2021 Erode, India, 2021: 1119-1127. DOI: 10.1109/ICCMC51019.2021.9418268
YIN Y., HOU X., LIU J., ZHOU X., and ZHANG D. Detection and attribution of changes in cultivated land use ecological efficiency: A case study on Yangtze River Economic Belt, China. Ecological Indicators, 2022, 137, 108753. DOI: 10.1016/j.ecolind.2022.108753.
RAHU M.A., CHANDIO A.F., AURANGZEB K., KARIM S., ALHUSSEIN M., and SHAHID M. Toward Design of Internet of Things and Machine Learning-Enabled Frameworks for Analysis and Prediction of Water Quality. IEEE Access, 2023, 11: 101055-101086. DOI: 10.1109/ACCESS.2023.3315649.
NAIMI S., AYOUBI S., DEMATTÊ J.A.M., ZERAATPISHEH M., AMORIM M.T.A., and DE O. MELLO F.A. Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning. Geocarto International, 2022, 37(25): 8230-8253. DOI: 10.1080/10106049.2021.1996639.
RAHU M.A., KUMAR P., KARIM S., and MIRANI A.A. Agricultural Environmental Monitoring : A WSN Perspective. University of Sindh Journal of Information and Communication Technology, 2018, 2(1): 17-24.
KAUR A., SINGH G., KUKREJA V., SHARMA S., SINGH S., and YOON B. Adaptation of IoT with Blockchain in Food Supply Chain Management: An Analysis-Based Review in Development, Benefits and Potential Applications. Sensors, 2022, 22(21). DOI: 10.3390/s22218174.
LYDIA J., VIMALRAJ L.S.S., MONISHA R., and MURUGAN R. Automated food grain monitoring system for warehouse using IOT. Measurement: Sensors, 2022, 24(September), 100472. DOI: 10.1016/j.measen.2022.100472.
MADDALA V.K.S., JAYARAJAN K., BRAVEEN M., WALIA R., KRISHNA P., PONNUSAMY S., and KALIYAPERUMAL K. Multisensor Data and Cross-Validation Technique for Merging Temporal Images for the Agricultural Performance Monitoring System. Journal of Food Quality, 2022, Article ID 9575423. DOI: 10.1155/2022/9575423.
MUONEKE O.B., OKERE K.I., and NWAEZE C.N. Agriculture, globalization, and ecological footprint: the role of agriculture beyond the tipping point in the Philippines. Environmental Science and Pollution Research, 2022, 29(36): 54652-54676. DOI: 10.1007/s11356-022-19720-y.
NIGAM A., GARG S., AGRAWAL A., and AGRAWAL P. Crop Yield Prediction Using Machine Learning Algorithms. In: 2019 Fifth International Conference on Image Information Processing (ICIIP) 15-17 November 2019 Shimla, India, 2019: 125-130. DOI: 10.1109/ICIIP47207.2019.8985951.
SALEEM M.H., POTGIETER J., and ARIF K.M. Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments. Precision Agriculture, 2021, 22: 2053-2091. DOI: 10.1007/s11119-021-09806-x.
HARAKANNANAVAR S.S., RUDAGI J.M., PURANIKMATH V.I., SIDDIQUA A., and PRAMODHINI R. Plant leaf disease detection using computer vision and machine learning algorithms. Global Transitions Proceedings, 2022, 3(1): 305-310. DOI: 10.1016/j.gltp.2022.03.016.
MONTEMAYOR E., ANDRADE E.P., BONMATÍ A., and ANTÓN A. Critical analysis of life cycle inventory datasets for organic crop production systems. International Journal of Life Cycle Assessment, 2022, 27(4): 543-563. DOI: 10.1007/s11367-022-02044-x.
XU J., GU B., and TIAN G. Review of agricultural IoT technology. Artificial Intelligence in Agriculture, 2022, 6: 10-22. DOI: 10.1016/j.aiia.2022.01.001.
PUGLIESE R., REGONDI S., and MARINI R. Machine learning-based approach: Global trends, research directions, and regulatory standpoints. Data Science and Management, 2021, 4: 19-29. DOI: 10.1016/j.dsm.2021.12.002.
HUDAIT M., and PATEL P.P. Crop-type mapping and acreage estimation in smallholding plots using Sentinel-2 images and machine learning algorithms: Some comparisons. Egyptian Journal of Remote Sensing and Space Sciences, 2022, 25(1): 147-156. DOI: 10.1016/j.ejrs.2022.01.004.
SUN X., RITZEMA H., HUANG X., BAI X., and HELLEGERS P. Assessment of farmers’ water and fertilizer practices and perceptions in the North China Plain. Irrigation and Drainage, 2022, 71(4): 980-996. DOI: 10.1002/ird.2719.
BHATNAGAR V., and CHANDRA R. IoT-Based Soil Health Monitoring and Recommendation System. Springer, Singapore, 2020. DOI: 10.1007/978-981-15-0663-5_1.
MERONI M., WALDNER F., SEGUINI L., KERDILES H., and REMBOLD F. Yield forecasting with machine learning and small data: What gains for grains? Agricultural and Forest Meteorology, 2021, 308–309, 108555. DOI: 10.1016/j.agrformet.2021.108555.
DURAI S.K.S., and SHAMILI M.D. Smart farming using Machine Learning and Deep Learning techniques. Decision Analytics Journal, 2022, 3, 100041. DOI: 10.1016/j.dajour.2022.100041.
ZERAATPISHEH M., AYOUBI S., JAFARI A., TAJIK S., and FINKE P. Geoderma Digital mapping of soil properties using multiple machine learning in a semi-arid region, Central Iran. Geoderma, 2019, 338: 445-452. DOI: 10.1016/j.geoderma.2018.09.006.
SAMI M., KHAN S.Q., KHURRAM M., FAROOQ M.U., ANJUM R., AZIZ S., QURESHI R., and SADAK F. A Deep Learning-Based Sensor Modeling for Smart Irrigation System. Agronomy, 2022, 12(1), 212. DOI: 10.3390/agronomy12010212.
GHOBADPOUR A., MONSALVE G., CARDENAS A., and MOUSAZADEH H. Off-Road Electric Vehicles and Autonomous Robots in Agricultural Sector: Trends, Challenges, and Opportunities. Vehicles, 2022, 4(3): 843-864. DOI: 10.3390/vehicles4030047.
WANG Q., XIA M., CHEN Y., and YU Y. Design and Implementation of WSN-based Warehouse Temperature Sensor Monitoring System. Journal of Physics: Conference Series, 2022, 2246, 012006. DOI: 10.1088/1742-6596/2246/1/012006.
ILYAS Q.M., and AHMAD M. Smart farming: An enhanced pursuit of sustainable remote livestock tracking and geofencing using IoT and GPRS. Wireless Communications and Mobile Computing, 2020, Article ID 6660733. DOI: 10.1155/2020/6660733.
SUBEESH A., and MEHTA C.R. Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture, 2021, 5: 278-291. DOI: 10.1016/j.aiia.2021.11.004.
ABD ALGANI Y.M., MARQUEZ CARO O.J., ROBLADILLO BRAVO L.M., KAUR C., AL ANSARI M.S., and KIRAN B. Bala Leaf disease identification and classification using optimized deep learning. Measurement: Sensors, 2022, 25, 100643. DOI: 10.1016/j.measen.2022.100643.
ARIAS M., CAMPO-BESCÓS M.Á., and ÁLVAREZ-MOZOS J. Crop classification based on temporal signatures of Sentinel-1 observations over Navarre province, Spain. Remote Sensing, 2020, 12(2). DOI: 10.3390/rs12020278.
CHEN D., LU Y., LI Z., and YOUNG S. Performance Evaluation of Deep Transfer Learning on Multiclass Identification of Common Weed Species in Cotton Production Systems. Computers and Electronics in Agriculture, 2022, 198, 107091. DOI: 10.1016/j.compag.2022.107091
CHANDEL N.S., CHAKRABORTY S.K., RAJWADE Y.A., DUBEY K., TIWARI M.K., and JAT D. Identifying crop water stress using deep learning models. Neural Computing & Applications, 2021, 33(10): 5353-5367. DOI: 10.1007/s00521-020-05325-4.
CHANTRY M., HATFIELD S., DUEBEN P., POLICHTCHOUK I., and PALMER T. Machine Learning Emulation of Gravity Wave Drag in Numerical Weather Forecasting. Journal of Advances in Modeling Earth Systems, 2021, 13(7). DOI: 10.1029/2021MS002477.
MARAVEAS C., and BARTZANAS T. Application of Internet of Things (IoT) for Optimized Greenhouse Environments. AgriEngineering, 2021, 3(4): 954-970. DOI: 10.3390/agriengineering3040060.
SANISLAV T., MOIS G.D., ZEADALLY S., and FOLEA S.C. Energy Harvesting Techniques for Internet of Things (IoT). IEEE Access, 2021, 9: 39530-39549. DOI: 10.1109/ACCESS.2021.3064066.
QUY V.K., HAU, N.V. ANH D.V., QUY N.M., BAN N.T., LANZA S., RANDAZZO G., and MUZIRAFUTI A. IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Applied Sciences, 2022, 12(7), 3396. DOI: 10.3390/app12073396.
CHEHRI A., CHAIBI H., SAADANE R., HAKEM N., and WAHBI M. A framework of optimizing the deployment of IoT for precision agriculture industry. Procedia Computer Science, 2020, 176: 2414-2422. DOI: 10.1016/j.procs.2020.09.312.
GUPTA P.M., SALPEKAR M., and TEJAN P.K. Agricultural practices Improvement Using IoT Enabled SMART Sensors. In: 2018 International Conference on Smart City and Emerging Technology (ICSCET) 05-05 January 2018 Mumbai, India. 2018. DOI: 10.1109/ICSCET.2018.8537291.
LI Y., and CHAO X. Toward Sustainability: Trade-Off Between Data Quality and Quantity in Crop Pest Recognition. Frontiers in Plant Science, 2021, 12, Article 811241. DOI: 10.3389/fpls.2021.811241.
KUNDU N., RANI G., DHAKA V.S., GUPTA K., NAYAK S.C., VERMA S., IJAZ M.F., and WOŹNIAK M. Iot and interpretable machine learning based framework for disease prediction in pearl millet. Sensors, 2021, 21(16), 5386. DOI: 10.3390/s21165386.
ZENG C., ZHANG F., and LUO M. A deep neural network-based decision support system for intelligent geospatial data analysis in intelligent agriculture system. Soft Computing, 2022, 26(20): 10813-10826. DOI: 10.1007/s00500-022-07018-7.
PALEYES A., URMA R.G., and LAWRENCE N.D. Challenges in Deploying Machine Learning: A Survey of Case Studies. ACM Computing Surveys, 2022, 55(6). DOI: 10.1145/3533378.
DHANYA V.G., SUBEESH A., KUSHWAHA N.L., VISHWAKARMA D.K., KUMAR T.N., RITIKA G., and SINGH A.N. Deep learning based computer vision approaches for smart agricultural applications. Artificial Intelligence in Agriculture, 2022, 6: 211-229. DOI: 10.1016/j.aiia.2022.09.007.
TIAN H., WANG P., TANSEY K., HAN D., ZHANG J., ZHANG S., and LI H. A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China. International Journal of Applied Earth Observation and Geoinformation, 2021, 102(17), 102375. DOI: 10.1016/j.jag.2021.102375.
Refbacks
- There are currently no refbacks.