In Silico Analysis of the Potential of Mangifera Sumatrana as an Antidiabetic

Fitmawati, Rodesia Mustika Roza, Yusfiati, Asih Rahayu Ajeng Agesti

Abstract

Diabetes is the most common endocrine disorder worldwide that causes heredity, radiation, other disorders, and pancreatic diseases. Various developed synthetic drugs and protein inhibitors treat diabetes, but they have side effects that are at risk of harming health. Alternative drugs from the plant are urgently necessary. Mangifera sumatrana is one of the potential candidates for antidiabetic therapy. This study used an in silico approach and aimed to determine bioactivity and pharmacokinetic properties of ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles, protein–protein interaction, and molecular dynamics. This assay used M. sumatrana compounds and target proteins related to diabetes, especially aldose reductase, alpha-glucosidase, and sodium-glucose co-transporter 2. The results showed that the compounds of M. sumatrana have bioactivity as anti-inflammatory, antioxidant, free radical scavenger, NO antagonist, and antidiabetic. The compounds conformed to several pharmacokinetic standards, and four were non-hepatotoxic. Compound (1S,2S,7R,16S,18S,20R)-11-Hydroxy-20-(hydroxymethyl)-16-methoxy-6,6,7,20-tetramethyl-10,18-bis(3-methyl-2-buten-1-yl)-3,8,19-trioxahexacyclo[14.4.1.02,14.02,18.04,12.05.9]henicosa-4,9,11,14-tetraene-13,17-dione and gardenin E have lower binding affinity against aldose reductase and alpha-glucosidase. 4,7,7-trimethyl-3-oxobicyclo(2.2.1)heptane-1-carboxylic acid and 2-heptyl-5-methylisophthalic acid are predicted to be stable against potency, and four compounds of M. sumatrana – to have the potential as the best candidates for aldose reductase, alpha-glucosidase, and SGLT-2 inhibitors against diabetes. Information from this study can be the basis for developing plant-based drugs without side effects for people with diabetes on an industrial scale.

 

Keywords: Mangifera sumatrana, diabetes mellitus, molecular docking, plant-based inhibitors, protein-targeted drugs.

 

https://doi.org/10.55463/issn.1674-2974.50.10.4


Full Text:

PDF


References


INTERNATIONAL DIABETES FEDERATION. IDF Diabetes Atlas. 10th ed. Brussels, Belgium, 2021. https://www.diabetesatlas.org

PUNTHAKEE Z., GOLDENBERG R., and KATZ P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Canadian Journal of Diabetes, 2018, 42(S1): 10-15. https://doi.org/10.1016/j.jcjd.2017.10.003

JAN A.A., KHAN A., KHAN S., and KHAN M. Causes, complications and management of diabetes mellitus. Chronicle Journal of Food and Nutrition, 2017, 1: 1-3.

RATHORE P.K., ARATHY V., ATTIMARAD V.S., KUMAR P., and ROY S. In-silico analysis of gymnemagenin from Gymnemasylvestre (Retz.) R. Br. with targets related to diabetes. Journal of Theoretical Biology, 2016, 391: 95-101. https://doi.org/10.1016/j.jtbi.2015.12.004

LI W., ZHANG Y., and SHAO N. Protective effect of glycine in streptozotocin-induced diabetic cataract through aldose reductase inhibitory activity. Biomedicine & Pharmacotherapy, 2019, 114, 108794.

ASSEFA S.T., YANG E.Y., CHAE S.Y., SONG M., LEE J., CHO M.C., and JANG S. Alpha-glucosidase inhibitory activities of plants with focus on common vegetables. Plants, 2019, 9(1). https://doi.org/10.3390/plants9010002

FERRANNINI E. Sodium-Glucose Co-transporters and Their Inhibition: Clinical Physiology. Cell Metabolism, 2017, 26(1): 27-38.

HAQ F.U., SIRAJ A., AMEER M.A., HAMID T., RAHMAN M., KHAN S., KHAN S., and MASUD S. Comparative review of drugs used in diabetes mellitus—new and old. Journal of Diabetes Mellitus, 2021, 11: 115-131. https://doi.org/10.4236/jdm.2021.114009

TANG X., BRINTON R.D., CHEN Z., FARLAND L.V., KLIMENTIDIS Y., MIGRINO R., REAVEN P., RODGERS K., and ZHOU J.J. Use of oral diabetes medications and the risk of incident dementia in US veterans aged ≥60 years with type 2 diabetes. Diabetes Research and Care, 2022, 10. https://doi.org/10.1136/bmjdrc-2022-002894

SRINIVASAN P., VIJAYAKUMAR S., KOTHANDARAMAN S., and PALANI M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. Journal of Pharmaceutical Analysis, 2018, 8(2): 109-118. https://doi.org/10.1016/j.jpha.2017.10.00

FITMAWATI., RESIDA E., KHOLIFAH S.N., ROZA R.M., ALMURDANI M., and RAJUDIN E. Phytochemical screening and antioxidant profiling of Sumatran wild mangoes (Mangifera spp.): a potential source for medicine antidegenerative effects. F1000Research, 2020, 9: 220. https://doi.org/10.12688/f1000research.22380.3

FITMAWATI., ANISA N., ROZA R.M., JULIANTARI E., and KHOLIFAH S.N. The effectiveness of semi-wild Sumatran Mango (Mangifera spp.) leaves as a phytotherapy agent for breast cancer. AIP Conference Proceedings, 2022, in review.

FITMAWATI., KHAIRUNNISA., RESIDA E., KHOLIFAH S.N., ROZA R.M., and EMRIZAL E. Chemotaxonomic study of sumatran wild mangoes (Mangifera spp.) based on liquid chromatography massspectrometry (LC-MS). SABRAO Journal of Breeding and Genetics, 2021, 53(1): 27-43.

FITMAWATI, RESIDA E., KHOLIFAH S.N., ROZA R.M., ALMURDANI M., and EMRIZAL E. Antioxidant (gallic acid and quercetin) profile of Sumatran wild mangoes (Mangifera spp.): a potential source for antidegenerative medicine. F1000Research, 2020, 9(5): 220. https://doi.org/10.12688/f1000research.22380.2

LUQMAN A., KHARISMA V.D., RUIZ R.A., and GÖTZ F. In silico and in vitro study of trace amines (ta) and dopamine (dop) interaction with human alpha 1-adrenergic receptor and the bacterial adrenergic receptor QseC. Cellular Physiology and Biochemistry, 2020, 54: 888-898.

WIDYANANDA M.H., WICAKSONO S.T., RAHMAWATI K., PUSPITARINI S., ULFA S.M., JATMIKO Y.D., MASRURI M., and WIDODO N.A potential anticancer mechanism of finger root (Boesenbergia rotunda) extracts against a breast cancer cell line. Scientifica, 2022, Article ID 9130252. https://doi.org/10.1155/2022/9130252

AINI N.S., KHARISMA V.D., ANSORI A., MURTADLO A.A.A., TAMAM M.B., TURISTA D.D. R., ROSADI I., SUCIPTO T.H., JAKHMOLA V., REBEZOV M., ULLAH E., and ZAINUL R. Bioactive compounds screening of Rafflessia sp. and Sapria sp. (Family: Rafflesiaceae) as anti-SARS-CoV-2 via tetra inhibitors: An in silico research. Journal of Pharmacy and Pharmacognosy Research, 2023, 11(4): 611-624. https://doi.org/10.56499/jppres23.1620_11.4.611

PRASETYANTI I.K., SUKARDIMAN., and SUHARJONO. ADMET prediction and in silico of mangostin derivatives and sinensetin on maltase-glucomylase target for searching anti-diabetes drug candidates. Pharmacognosy Journal, 2021, 13(4): 883-889. https://doi.org/10.5530/pj.2021.13.113

TRIPATHY D., NAYAK B.S., MOHANTY B., and MISHRA B. Solid dispersion: A technology for improving aqueous solubility of drug. Journal of Pharmaceutical Advanced Research, 2019, 2(7): 577-586.

WARGASETIA T.L., RATNAWATI H., WIDODO N., and WIDYANANDA M.H. Bioinformatics study of sea cucumber peptides as antibreast cancer through inhibiting the activity of overexpressed protein (EGFR, PI3K, AKT1, and CDK4). Cancer Informatics, 2021, 20.

RENA S.R., NURHIDAYAH N., and RUSTAN R. Analisis molecular docking senyawa Garcinia mangostana L sebagai kandidat anti SARS-COV-2. Unand Physics Journal, 2022, 11(1): 82-88. https://doi.org/.25077/jfu.11.1.82-88.2022

ABDUL-HAMMED M., ADEDOTUN I.O., OLAJIDE M., RABOR C.O., AFOLABI T.I., GBADEBO I.O., RHYMAN L., and RAMASAMI P. Virtual screening, ADMET profiling, PASS prediction, and bioactivity studies of potential inhibitory roles of alkaloids, phytosterols, and flavonoids against COVID-19 main protease (Mpro). Natural Product Research, 2022, 36(12): 3110-3116.

MAURYA P., SINGH S., GUPTA M.M., and LUQMAN S. Characterization of bioactive constituents from the gum resin of Gardenia lucida and its pharmacological potential. Biomedicine & Pharmacotherapy, 2017, 85: 444-456. https://doi.org/10.1016/j.biopha.2016.11.049.

PIRES D.E.V., BLUNDELL T.L., and ASCHER D.B. pkCSM: Predicting small-molecule pharmacokinetics and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 2015, 58(9): 4066-4072.

ANDHIARTO Y., SUCIATI S., PRADITAPUSPA E. N., and SUKARDIMAN S. In silico analysis and ADMET prediction of flavonoid compounds from Syzigium cumini var. album on α-Glucosidase receptor for searching anti-diabetic drug candidates. Pharmacognosy Journal, 2022, 14(6): 736-743. https://doi.org/10.5530/pj.2022.14.161

BHOSLE V.K., ALTIT G., AUTMIZGUINE J., and CHEMTOB S. Basic pharmacologic principles. Elsevier, Philadelphia, 2017

YANI Y., SUPANDI S., and MERDEKAWATI F. In silico toxicity prediction of 1-phenyl-1-(quinazolin-4-yl) ethanol compounds by using Toxtree, pkCSM and preADMET. Pharmaciana, 2018, 8(2): 205- 216.

SHAHID R.K., AHMED S., LE D., and YADAV S. Diabetes and cancer: risk, challenges, management and outcomes. Cancers (Basel), 2021, 13(22), 5735. https://doi.org/10.3390/cancers13225735.

DETMAR E., MÜLLER V., ZELL D., ACKERMANN L., and BREUGST M. Cobalt-catalyzed C-H cyanations: Insights into the reaction mechanism and the role of London dispersion. Beilstein Journal of Organic Chemistry, 2018, 14: 1537-1545. https://doi.org/ 10.3762/bjoc.14.130.

ARWANSYAH A., AMBARSARI L., and SUMARYADA T.I. Docking simulation of curcumin compounds and their analogues as androgen receptor inhibitors in prostate cancer. Current Biochemistry, 2014, 1(1): 11-19.

AINI N.S., KHARISMA V.D., WIDYANANDA M.H., MURTADLO A.A., PROBOJATI R.T., TURISTA D.D., TAMAM M.B., JAKHMOLA V., NOVALIENDRY D., MANDELI R.S., OKTAVIA B., ALBARI M.T., AL AZIZ S., GHIFARI M.R., SURYANI O., AZHARI P., GHIFARI M.A., PURNAMASARI D., SAMALA A.D., MAAHURY M.F., ANSORI A.N.M., and ZAINUL R. Bioactive compounds from purslane (Portulaca oleracea L.) and star anise (Illicium verum Hook) as SARS-CoV-2 antiviral agent via dual inhibitor mechanism: in silico approach. Pharmacognosy Journal, 2022, 14(4): 352-357. https://doi.org/ 10.5530/pj.2022.14.106

BENSON N.C., and DAGGETT V.A chemical group graph representation for efficient high-throughput analysis of atomistic protein simulations. Journal of Bioinformatics and Computational Biology, 2012, 10(4), 1250008. https://doi.org/10.1142/S0219720012500084


Refbacks

  • There are currently no refbacks.