Chemical Compounds and Pharmaceutical Properties of Rhodomyrtus Tomentosa: A Traditional Medicinal Herb from South Kalimantan, Indonesia

Muddatstsir Idris, Adi Setyo Purnomo, Fahimah Martak, Yong-Ung Kim, Sri Fatmawati

Abstract

Rhodomyrtus tomentosa is an herbal plant that grows in Indonesia, especially in South Kalimantan, with the local name Karamunting. More than 100 compounds have been identified from the leaves, stems, buds, barks, roots, fruits, aerial parts, and flowers of this plant. Phloroglucinols, flavonoids, terpenoids, anthracene glycosides, tannins, and lipids are the groups of compounds that have been identified. The pharmacological and biological effects of extracts or isolated compounds from these plants are known to have anti-inflammatory, anti-cancer, antioxidant, antibacterial, antimalarial, antiviral, antifungal, and other activities. Rhodomyrtone is a bioactive compound from the phloroglucinols group, which is the most widely isolated and has several bioactivities as an antibacterial, anti-inflammatory, anticancer, cytotoxic, and antidepressant agent. Leaf ethanol extract is the most frequently studied extract and has bioactivity as an antibacterial, biocontrol, antioxidant, and cytotoxic agent.

 

Keywords: anti-cancer, antioxidant, bioactivity, Rhodomyrtus tomentosa.

 

https://doi.org/10.55463/issn.1674-2974.50.8.9


Full Text:

PDF


References


HAMID H A, MUTAZAH S S Z R, and YUSOFF M M. Rhodomyrtus tomentosa: A Phytochemical and Pharmacological Review. Asian Journal of Pharmacheutical and Clinical Research, 2017, 10(1): 10-16. https://dx.doi.org/10.22159/ajpcr.2017.v10i1.12773

VO T S, and NGO D H. The Health Beneficial Properties of Rhodomyrtus tomentosa as Potential Functional Food. Biomolecules, 2019, 9: 76. https://doi.org/10.3390/biom9020076

CUI C, ZHANG S, YOU L, et al. Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins. Food Chemistry, 2013, 139: 1-8. http://dx.doi.org/10.1016/j.foodchem.2013.01.107

DACHRIYANUS, SALNI, SARGENT M V, et al. Rhodomyrtone, an Antibiotic from Rhodomyrtus tomentosa. Australian Journal of Chemistry, 2002, 55: 229-232. https://doi.org/10.1071/CH01194

GLOBAL INVASIVE SPECIES DATABASE (GISD). Species profile Rhodomyrtus tomentosa, 2015, Available from: http://www.iucngisd.org/gisd/species.php?sc=212

HUI W H, LI M M, and LUK K. Triterpenoids and steroids from Rhodomyrtus tomentosa. Phytochemistry, 1975, 14(3): 833 834.

SALEEM M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Letters, 2009, 285: 109-115. https://doi.org/10.1016/j.canlet.2009.04.033

HUI W H, and LI M M. Two New Triterpenoids from Rhodomyrtus tomentosa. Phytochemistry, 1976, 15: 1741-1743.

HIRANRAT A, and MAHABUSARAKAM W. New acylphloroglucinols from the leaves of Rhodomyrtus tomentosa. Tetrahedron, 2008, 64: 11193–11197. https://doi.org/10.1016/j.tet.2008.09.054

LIMSUWAN S, TRIP E N, KOUWEN T R H M, et al. Rhodomyrtone: A new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine, 2009, 16: 645-651. https://doi.org/10.1016/j.phymed.2009.01.010

HIRANRAT A, MAHABUSARAKAM W, CARROLL A R, et al. Tomentosones A and B, Hexacyclic Phloroglucinol Derivatives from the Thai Shrub Rhodomyrtus tomentosa. The Journal of Organic Chemistry, 2012, 77: 680-683. https://dx.doi.org/10.1021/jo201602y

LIU H X, CHEN K, TANG G H, et al. Isolation and biomimetic total synthesis of tomentodiones A-B, terpenoid-conjugated phloroglucinols from the leaves of Rhodomyrtus tomentosa. Royal Society of Chemistry Advances, 2016, 6: 48231-48236. https://doi.org/10.1039/x0xx00000x

LIU H X, TAN H B, and QIU S X. Antimicrobial acylphloroglucinols from the leaves of Rhodomyrtus tomentosa. Journal of Asian Natural Products Research, 2016, 18: 535-541. http://dx.doi.org/10.1080/10286020.2015.1121997

CARROL A R, AVERY V M, DUFFY, et al. Watsonianone A-C, anti-plasmodial β-triketones from the Australian tree, Corymbia watsoniana. Organic & Biomolecular Chemistry, 2013, 11: 453-458. https://doi.org/10.1039/c2ob26931g

SUSANTI D, SIRAT H M, AHMAD F, et al. Antioxidant and cytotoxic flavonoids from the flowers of Melastoma malabathricum L. Food Chemistry, 2007, 103: 710-716. https://doi.org/10.1016/j.foodchem.2006.09.011

NESSA F, ISMAIL Z, MOHAMED N, and HARIS M R H M. Free Radical-scavengging activity of organic extracts and of pure flavanoids of Blumea balsamifera DC leaves. Food Chemistry, 2004, 88: 243-252. https://doi.org/10.1016/j.foodchem.2004.01.041

WU P, MA G, LI N, et al. Investigation of in vitro and in vivo antioxidant activities of flavonoids rich extract from the berries of Rhodomyrtus tomentosa (Ait.) Hassk. Food Chemistry, 2015, 173: 194 202. http://dx.doi.org/10.1016/j.foodchem.2014.10.023

TUNG N H, DING Y, CHOI E M, et al. New anthracene glycosides from Rhodomyrtus tomentosa Stimulate Osteoblastic Differentiation of MC3T3 E1 cells. Archives Pharmacal Research, 2009, 32(4): 515-520. https://doi.org/10.1007/s12272-009-1406-8

KUMARI G N K, RAO L J M, and RAO N S P. Myricetin Methyl Ethers from Solanum Pubescens. Phytochemistry, 1984, 23(11): 2701-2702

LIU H X, ZHANG W M, XU Z F, et al. Isolation, synthesis, and biological activity of tomentosenol A from the leaves of Rhodomyrtus tomentosa. Royal Society of Chemistry Advances, 2016, 6: 25882–25886. https://doi.org/10.1039/c6ra01594h

ZHANG Y L, CHEN C, WANG X B, et al. Rhodomyrtials A and B, Two Meroterpenoids with a Triketone Sesquiterpene-Triketone Skeleton from Rhodomyrtus tomentosa: Structural Elucidation and Biomimetic Synthesis. Organic Letters, 2016, 18: 4068-4071. https://doi.org/10.1021/acs.orglett.6b01944

LIU H X, CHEN K, YUAN Y, et al. Rhodomentones A and B, novel meroterpenoids with unique NMR characteristics from Rhodomyrtus tomentosa. Organic and Biomolecul Chemistry, 2016, 14: 7354-7360. https://doi.org/10.1039/C6OB01215A.

ZHANG Y L, ZHOU X W, WU L, et al. Isolation, Structure Elucidation, and Absolute Configuration of Syncarpic Acid-Conjugated Terpenoids from Rhodomyrtus tomentosa. Journal of Natural Products, 2017, 80: 989-998. https://doi.org/10.1021/acs.jnatprod.6b01005

HIRANRAT W, HIRANRAT A, and MAHABUSARAKAM W. Rhodomyrtosones G and H, minor phloroglucinols from the leaves of Rhodomyrtus tomentosa. Phytochemistry Letters, 2017, 21: 25-28. http://dx.doi.org/10.1016/j.phytol.2017.05.013

ZHANG Y B, LI W, JIANG L, et al. Cytotoxic and anti-inflammatory active phloroglucinol derivatives from Rhodomyrtus tomentosa. Phytochemistry, 2018, 153: 111-119. https://doi.org/10.1016/j.phytochem.2018.05.018

HIRANRAT A, CHITBANKLUOI W, MAHABUSARAKAM W, et al. A new flavellagic acid derivative and phloroglucinol from Rhodomyrtus tomentosa. Natural Product Research, 2012, 26 (20): 1904-1909. http://dx.doi.org/10.1080/14786419.2011.628666

ZUANG L, CHEN L F, ZHANG Y B, et al. Watsonianone A from Rhodomyrtus tomentosa fruit attenuates respiratory-syncytial-virus-induced inflammation in vitro. Journal of Agricultural and Food Chemistry, 2017, 65: 3481-3489. https://doi.org/10.1021/acs.jafc.7b00537

QIN X J, RAUWOLF T J, LI P P, et al. Isolation and Synthesis of Novel Meroterpenoids from Rhodomyrtus tomentosa: Investigation of a Reactive Enetrione Intermediate. Angewandte Chemie International Edition, 2018, 58(13): 4291-4296. https://doi.org/10.1002/anie.201814421

LIU J, SONG J G, SU J C, et al. Tomentodione E, a new sec-pentyl syncarpic acid-based meroterpenoid from the leaves of Rhodomyrtus tomentosa. Journal of Asian Natural Products Research, 2018, 20: 67–74. http://dx.doi.org/10.1080/10286020.2017.1318852

ZHAO L Y, LIU H X, WANG L, et al. Rhodomyrtosone B, a membrane-targeting anti-MRSA natural acylgphloroglucinol from Rhodomyrtus tomentosa. Journal of Ethnopharmacology, 2019, 228: 50-57. https://doi.org/10.1016/j.jep.2018.09.011

DACHRIYANUS, FAHMI R, SARGENT M V, et al. 5-Hydroxy-3,3’,4’,5’,7,7-pentamethoxyflavone (combretol). Organic Paper Acta Crystallographica Section E Structure Reports Online, 2004, E60: o86-o88. https://doi.org/10.1107/S1600536803027880

LAI T N H, HERENT M F, QUETIN-LECLERCQ J, et al. Piceatannol, a potent bioactive stilbene, as major phenolic component in Rhodomyrtus tomentosa. Food Chemistry, 2013, 138: 1421-1430. http://dx.doi.org/10.1016/j.foodchem.2012.10.125

SHIRATAKE S, NAKAHARA T, IWAHASHI H, et al. Rose myrtle (Rhodomyrtus tomentosa) extract and its component, piceatannol, enhance the activity of DNA polymerase and suppress the inflammatory response elicited by UVB induced DNA damage in skin cells. Molecular Medicine Reports, 2015, 12: 5857-5864. https://doi.org/10.3892/mmr.2015.4156

LAI T N H, ANDRÉ C, ROGEZ H, et al. Nutritional composition and antioxidant properties of the sim fruit (Rhodomyrtus tomentosa). Food Chemistry, 2015, 168: 410-416. http://dx.doi.org/10.1016/j.foodchem.2014.07.081

LOWRY J B. Anthocyanins of The Melastomataceae, Myrtaceae and Some Allied Families. Phytochemistry, 1976, 15: 513-516.

GIANG P H, HA T T, ANH N T H, and SON P T. Contribution to the Study on Polar Constituents from the Buds of Rhodomyrtus tomentosa (Ait.) Hassk. (Myrtaceae). Journal of Chemistry, 2007, 45(6): 749-750.

SU Q, DALAL S, GOETZ M, et al. Antiplasmodial phloroglucinol derivatives from Syncarpia glomulifera. Bioorganic & Medicinal Chemistry, 2016, 24(11): 2544-2548. https://doi.org/10.1016/j.bmc.2016.04.020

AYATOLLAHI A M, GHANADIAN M, AFSHARYPOUR S, et al. Pentacyclic Triterpenes in Euphorbia microsciadia with Their T-cell Proliferation Activity. Iranian Journal of Pharmaceutical Research, (2011), 10(2): 287-294. https:/doi:10.22037/IJPR.2011.963

GNOATTO S C B, DASSONVILLE-KLIMPT A, NASCIMENTO S D, et al. Evaluation of Ursolic acid Isolated from Ilex paraguariensis and Derivatives on Aromatase Inhibition. European Journal of Medicinal Chemistry, 2008, 43: 1865-1877. https://doi.org/10.1016/j.ejmech.2007.11.021

FRISCIC T, DRAB D M, and MACGILLIVRAY L R. A Test for Homology: Photoactive Crystalline Assemblies Involving Linear Templates Based on a Homologous Series of Phloroglucinols. Organic Letters, 2004, 6(25): 4647-4650. https:/doi:10.1021/ol0484052

ZHANG Y B, LI W, ZHANG Z M, et al. Two new triterpenoids from the roots of Rhodomyrtus tomentosa. Chemistry Letters, 2016, 45: 368-370. https:/doi:10.1246/cl.151188

LIMSUWAN S, KAYSER O, and VORAVUTHIKUNCHAI S P. Antibacterial Activity of Rhodomyrtus tomentosa (Aiton) Hassk. Leaf Extract against Clinical Isolates of Streptococcus pyogenes. Evidence-Based Complementary and Alternative Medicine, 2012, 2012: 1-6. https://doi.org/10.1155/2012/697183

LIMSUWAN S, HESSELING-MEINDERS A, VORAVUTHIKUNCHAI S P, et al. Potential antibiotic and anti-infective effects of rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk on Streptococcus pyogenes as revealed by proteomics. Phytomedicine, 2011, 18: 934-940. https://doi.org/10.1016/j.phymed.2011.02.007

LIMSUWAN S, HOMLAEAD S, WATCHARAKUL S, et al. Inhibition of microbial adhesion to plastic surface and human buccal epithelial cells by Rhodomyrtus tomentosa leaf extract. Archives of oral biology, 2014, 59: 1256-1265. http://dx.doi.org/10.1016/j.archoralbio.2014.07.017

VISUTTHI M, SRIMANOTE P, and VORAVUTHIKUNCHAI S P. Responses in the expression of extracellular proteins in Methicillin-Resistant Staphylococcus aureus treated with Rhodomyrtone. The Journal of Microbiology, 2011, 49: 956-964. https://10.1007/s12275-011-1115-0

SIANGLUM W, SRIMANOTE P, WONGLUMSOM W, et al. Proteome analyses of cellular proteins in Methicillin-Resistant Staphylococcus aureus treated with Rhodomyrtone, a novel antibiotic candidate. PLoS ONE, 2011, 6, e16628. https://doi.org/10.1371/journal.pone.0016628

SAISING J, and VORAVUTHIKUNCHAI S P. Anti Propionibacterium acnesactivity of rhodomyrtone, an effective compound from Rhodomyrtus tomentosa (Aiton) Hassk leaves. Anaerob, 2012, 18: 400-404. https://doi.org/10.1016/j.bbamem.2018.01.011

LEEJAE S, TAYLOR P W, and VORAVUTHIKUNCHAI S P. Antibacterial mechanisms of rhodomyrtone against important hospital-acquired antibiotic-resistant pathogenic bacteria. Journal of Medical Microbiology, 2013, 62: 78-85. https://doi.org/10.1099/jmm.0.049205-0

LEEJAE S, HASAP L, and VORAVUTHIKUNCHAI S P. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. Journal of Medical Microbiology, 2013, 62: 421-428. https://doi.org/10.1099/jmm.0.047316-0

SHANKAR S, CHORACHOO J, JAISWAL L, and VORAVUTHIKUNCHAI S P. Effect of reducing agent concentrations and temperature on characteristics and antimicrobial activity of silver nanoparticles. Materials Letters, 2014, 137: 160-163. http://dx.doi.org/10.1016/j.matlet.2014.08.100

MORDMUANG A, and VORAVUTHIKUNCHAI S P. Rhodomyrtus tomentosa (Aiton) Hassk. Leaf extract: An alternative approach for the treatment of staphylococcal bovine mastitis. Research in Veterinary Science, 2015, 102: 242-246. http://dx.doi.org/10.1016/j.rvsc.2015.07.018

ODEDINA G F, VONGKAMJAN K, and VORAVUTHIKUNCHAI S P. Potential bio-control agent from Rhodomyrtus tomentosa against Listeria monocytogenes. Nutrients, 2015, 7: 7451-7468. https://doi.org/10.3390/nu7095346.

HMOTEH J, MUSTHAFA K S, POMWISED R, and VORAVUTHIKUNCHAI S P. Effects of Rhodomyrtus tomentosa extract on killing activity of human neutrophils and membrane integrity of enterohaemorrhagic Escherichia coli O157:H7. Molecules, 2016, 21: 692. https://doi.org/10.3390/molecules21060692

MITSUWAN W, OLAYA-ABRIL A, CALDERÓN-SANTIAGO M, et al. Integrated proteomic and metabolomic analysis reveals that rhodomyrtone reduces the capsule in Streptococcus pneumonia. Scientific Reports, 2017, 7: 2715. https://doi.org/10.1038/s41598-017-02996-3

SHANKAR S., LEEJAE S, JAISWAL L, and VORAVUTHIKUNCHAI S P. Metallic nanoparticles augmented the antibacterial potency of Rhodomyrtus tomentosa acetone extract against Escherichia coli. Microbial Pathogenesis, 2017, 107: 181-184. http://dx.doi.org/10.1016/j.micpath.2017.03.036

ROSLI M F A, ASARUDDIN M R, ROMLI A M, et al. Phytochemical studies of Rhodomyrtus tomentosa leaves, stem and fruits as antimicrobial and antioxidant agents. Transactions on Science and Technology, 2017, 4: 396-401.

NA-PHATTHALUNG P, CHUSRI S, SUANYUK N, and VORAVUTHIKUNCHAI S P. In vitro and in vivo assessments of Rhodomyrtus tomentosa leaf extract as an alternative anti-streptococcal agent in Nile tilapia (Oreochromis niloticus L.). Journal of Medical Microbiology, 2017, 66: 430-439. https://doi.org/10.1099/jmm.0.000453

SRISUWAN S, MACKIN K E, HOCKING D, et al. Antibacterial activity of rhodomyrtone on Clostridium difficile vegetative cells and spores in vitro. International Journal of Antimicrobial Agents, 2018, 52: 724-729. https://doi.org/10.1016/j.ijantimicag.2018.08.014

SAISING J, NGUYEN M T, HÄRTNER T, et al. Rhodomyrtone (Rom) is a membrane-active compound. BBA – Biomembrane, 2018, 1860: 1114-1124. https://doi.org/10.1016/j.bbamem.2018.01.011

SIANGLUM W, SAELOH D, TONGTAWE P, et al. Early effects of Rhodomyrtone on membrane integrity in Methicillin-Resistant Staphylococcus aureus. Microbial Drug Resistance, 2018, 24: 882-889. https://doi.org/10.1089/mdr.2016.0294

BACH Q N, HONGTHONG S, QUACH L T, et al. Antimicrobial activity of rhodomyrtone isolated from Rhodomyrtus tomentosa (Aiton) Hassk. Natural Product Research, 2020, 34(17): 2518-2523. https://doi.org/10.1080/14786419.2018.1540479

JEONG D, YANG W S, YANG Y, et al. In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract. Journal of Ethnopharmacology, 2013, 146: 205-213. http://dx.doi.org/10.1016/j.jep.2012.12.034

SRISUWAN S, TONGTAWE P, SRIMANOTE P, and VORAVUTHIKUNCHAI S P. Rhodomyrtone modulates innate immune responses of THP-1 monocytes to assist in clearing methicillin-resistant Staphylococcus aureus. PloS ONE, 2014, 9: e110321. https://doi.org/10.1371/journal.pone.0110321

SOLIHAH I., WULANDARI W, HERLINA, et al. T. Study on the anti-inflammatory properties of Karamunting (Rhodomyrtus tomentosa (Aiton) Hassk.) leaf extracts. IOP Conference Series: Journal of Physics: Conference Series 1282, 2019, 012087. https://doi.org/10.1088/1742-6596/1282/1/012087

CHORACHOO J, SAELOH D, SRICHANA T, et al. Rhodomyrtone as a potential anti-proliferative and apoptosis inducing agent in HaCaT keratinocyte cells. European Journal of Pharmacology, 2016, 772: 144-151. http://dx.doi.org/10.1016/j.ejphar.2015.12.005

WUNNOO S, SAISING J, and VORAVUTHIKUNCHAI S P. Rhodomyrtone inhibits lipase production, biofilm formation, and disorganizes established biofilm in Propionibacterium acnes. Anaerobe, 2017, 43: 61-68. http://dx.doi.org/10.1016/j.anaerobe.2016.12.002

TAYEH M, NILWARANGOON S, MAHABUSARAKUM W, and WATANAPOKASIN R. Anti-metastatic effect of rhodomyrtone from Rhodomyrtus tomentosa on human skin cancer cells. International Journal of Oncology, 2017, 50: 1035-1043. https://doi.org/10.3892/ijo.2017.3845

HAMID H A, MUTAZAH R, YUSOFF M M, et al. Comparative analysis of antioxidant and antiproliferative activities of Rhodomyrtus tomentosa extracts prepared with various solvents. Food and Chemical Toxicology, 2017, 108: 451-457. http://dx.doi.org/10.1016/j.fct.2016.10.004

ZHOU X W, XIA Y Z, ZHANG Y L, et al. Tomentodione M sensitizes multidrug resistant cancer cells by decreasing P-glycoprotein via inhibition of p38 MAPK signaling. Oncotarget, 2017, 8(60): 101965-101983. https://doi.org/10.18632/oncotarget.21949

TAYEH M, NILWARANGKOON S, TANUNYUTTHAWONGSE C, et al. Apoptosis and antimigration induction in human skin cancer cells by rhodomyrtone. Experimental and Therapeutic Medicine, 2018, 15: 5035-5040. https://doi/10.3892/etm.2018.6044

HMOTEH J, MUSTHAFA K S, and VORAVUTHIKUNCHAI S P. Effects of Rhodomyrtus tomentosa extract on virulence factors of Candida albicans and human neutrophil function. Archives of Oral Biology, 2018, 87: 35-42. https://doi.org/10.1016/j.archoralbio.2017.11.007

CHAI H, LIU B, ZHAN H, et al. Antidepressant Effects of Rhodomyrtone in Mice with Chronic Unpredictable Mild Stress-Induced Depression. International Journal of Neuropsychopharmacol, 2019, 22(2): 157-164. https://doi.org/10.1093/ijnp/pyy091

CHORACHOO J, LAMBERT S, FURNHOLM T, et al. The small molecule rhodomyrtone suppresses TNF-α and IL-17A-induced keratinocyte inflammatory responses: A potential new therapeutic for psoriasis. PLOS ONE, 2018, 13(10): e0205340. https://doi.org/10.1371/journal


Refbacks

  • There are currently no refbacks.