Effect of Freeze-Drying of Prickly Pear (Opuntia Ficus-Indica) on Flavonoids and Antioxidants

Iyad A. M. Alzaeem, Khadir E. K. Abdelhakam

Abstract

Prickly pear fruits (PPF) play a high-quality role in health due to its rich content of antioxidant and phenolic materials. This research is a cross sectional descriptive study, the efficacy of the drying method on the chemical attributes of PPF pulp on quality and safety during the storage period. The sample was divided into control and treatment by drying (oven-drying (OD) and freeze-drying (FD)). The flavonoid concentration in the pulp methanolic extracts was measured using spectrophotometry; the diphenylpicrylhydrazyl (DPPH) capacity was assessed using an adapted DPPH free radical-scavenging method, values of total phenolic content (TPC) and total flavonoid content (TFC) of fresh and dried PPF. The drying method had a significant effect on TFC; values were 39.88 and 18.05 μg/g CE fresh weight (FW) for the OD and FD, respectively. The FD exhibited about 77.56 ± 8.4 for TPC whereas the TFC estimated to 26.8 ± 11.4 mg GAE/100 gm FW. The DPPH for FD samples was significantly higher (249.8 ± 20.6) than that of the OD (75.2 ± 7.2). Mean values of Cupric Ion Antioxidant Reducing Capacity (CUPRAC) were 1005, 973 and 553 µMTE for fresh, FD and OD samples respectively. Meanwhile, the values were in significant differences in comparison between FD and OD of 973.5 ± 87.1 and 553.15 ± 16.6, respectively. The chemical composition, antioxidant capacity (DPPH, FARAP & CUPRAC) of PPF, and TFC of fruits were changed by drying. FD had the best results for the antioxidant capacity values as were the closest to the values of the fresh sample. Therefore, FD for PPF storage is proven to be recommended.

 

Keywords: freeze-drying, prickly pear, Opuntia ficus-indica, antioxidants.

 

https://doi.org/10.55463/issn.1674-2974.50.2.22


Full Text:

PDF


References


ÇAKMAK M., BAKAR B., IBRAHIM M. S., ÖZER D., KARATAS F., and SAYDAM S. Effect of freezing and drying methods on some biochemical properties of prickly fig (Opuntia ficus-indica) fruit. Yuzuncu Yil University Journal of Agricultural Sciences, 2020, 30(3): 535–543. https://doi.org/10.29133/yyutbd.689862

SUMAYA-MARTÍNEZ M. T., CRUZ-JAIME S., MADRIGAL-SANTILLÁN E., GARCÍA-PAREDES J. D., CARIÑO-CORTÉS R., CRUZ-CANSINO N., VALADEZ-VEGA C., MARTINEZ-CARDENAS L., and ALANÍS-GARCÍA E. Betalain, acid ascorbic, phenolic contents and antioxidant properties of purple, red, yellow and white cactus pears. International Journal of Molecular Sciences, 2011, 12(10): 6452–6468. https://doi.org/10.3390/ijms12106452

BENSADÓN S., HERVERT-HERNÁNDEZ D., SÁYAGO-AYERDI S. G., and GOÑI I. By-Products of Opuntia Ficus-Indica as a Source of Antioxidant Dietary Fiber. Plant Foods for Human Nutrition, 2010, 65(3): 210–216. https://doi.org/10.1007/s11130-010-0176-2

LIVREA M. A. and TESORIERE L. Health Benefits and Bioactive Components of the Fruits from Opuntia ficus-indica [L.] Mill. Journal of the Professional Association for Cactus Development, 2006, 8: 73–90. https://doi.org/10.56890/jpacd.v8i.280

INGLESE P., BASILE F., and SCHIRRA M. Cactus Pear Fruit Production. In: NOBEL P. S. (ed.) Cacti: Biology and uses. University of California Press, 2002: 291.

MORALES P., RAMÍREZ-MORENO E., DE CORTES SANCHEZ-MATA M., CARVALHO A. M., and FERREIRA I. C. F. R. Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia joconostle F.A.C. Weber ex Diguet and Opuntia matudae Scheinvar) of high consumption in Mexico. Food Research International, 2012, 46(1): 279–285. https://doi.org/10.1016/j.foodres.2011.12.031

BELHADJ SLIMEN I., NAJAR T., and ABDERRABBA M. Bioactive Compounds of Prickly Pear [Opuntia ficus-indica (L.) Mill.]. In: MURTHY H. N. and PAEK K. Y. (eds.) Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry. Springer, Cham, 2021: 171–209. https://doi.org/10.1007/978-3-030-57415-4_12

REDA T. H. and ATSBHA M. K. Nutritional composition, antinutritional factors, antioxidant activities, functional properties, and sensory evaluation of cactus pear (Opuntia ficus-indica) seeds grown in Tigray Region, Ethiopia. International Journal of Food Science, 2019, 2019: 5697052. https://doi.org/10.1155/2019/5697052

MABROUKI L., ZOUGARI B., BENDHIFI M., and BORGI M. A. Evaluation of antioxidant capacity, phenol and flavonoid contents of Opuntia streptacantha and Opuntia ficus indica fruits pulp. Revue “Nature & Technologie“. C- Sciences de l'Environnement, 2015, 13: 2–8. https://www.researchgate.net/publication/307210623_Evaluation_of_antioxidant_capacity_phenol_and_flavonoid_contents_of_Opuntia_streptacantha_and_Opuntia_ficus_indica_fruits_pulp_Evaluation_of_antioxidant_capacity_phenol_and_flavonoid_contents_of_Opunt

PATIL K. V., DAGADKHAIR A. C., BHOITE A. A., and ANDHALE R. R. Physico-Functional Characteristics of Opuntia Ficus-Indica. International Journal of Food Science and Nutrition, 2019, 4(6): 124–127. https://www.foodsciencejournal.com/archives/2019/vol4/issue6/4-6-58

BENDHIFI ZARROUG M., BARAKET G., ZOURGUI L., SOUID S., and SALHI HANNACHI A. Genetic diversity and phylogenetic relationship among tunisian cactus species (opuntia) as revealed by random amplified microsatellite polymorphism markers. Genetics and Molecular Research, 2015, 14(1): 1423–1433. https://doi.org/10.4238/2015.February.13.21

DJERIDANE A., YOUSFI M., NADJEMI B., BOUTASSOUNA D., STOCKER P., and VIDAL N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 2006, 97(4): 654–660. https://doi.org/10.1016/j.foodchem.2005.04.028

THAIPONG K., BOONPRAKOB U., CROSBY K., CISNEROS-ZEVALLOS L., and HAWKINS BYRNE D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 2006, 19(6–7): 669–675. https://doi.org/10.1016/j.jfca.2006.01.003

APAK R., GÜÇLÜ K., ÖZYÜREK M., and KARADEMIR S. E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 2004, 52(26): 7970–7981. https://doi.org/10.1021/jf048741x

BENZIE I. F. F. and STRAIN J. J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 1999, 299: 15–27. https://doi.org/10.1016/S0076-6879(99)99005-5

SALIM N., ABDELWAHEB C., RABAH C., and AHCENE B. Chemical composition of Opuntia ficus-indica (L.) fruit. African Journal of Biotechnology, 2009, 8(8): 1623–1624. https://doi.org/10.4314/ajb.v8i8.60345

DE TORRES C., DÍAZ-MAROTO M. C., HERMOSÍN-GUTIÉRREZ I., and PÉREZ-COELLO M. S. Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Analytica Chimica Acta, 2010, 660(1): 177–182. https://doi.org/10.1016/j.aca.2009.10.005

REYES A., EVSEEV A., MAHN A., BUBNOVICH V., BUSTOS R., and SCHEUERMANN E. Effect of operating conditions in freeze-drying on the nutritional properties of blueberries. International Journal of Food Sciences and Nutrition, 2011, 62(3): 303–306. https://doi.org/10.3109/09637486.2010.534078

MEDINA E. M. D., RODRÍGUEZ E. M. R., and ROMERO C. D. Chemical characterization of Opuntia dillenii and Opuntia ficus indica fruits. Food Chemistry, 2007, 103(1): 38–45. https://doi.org/10.1016/j.foodchem.2006.06.064

MERAL R. Farklı Sıcaklık Derecelerinin Uşkun Bitkisinin Antioksidan Aktivitesi ve Fenolik Profili Üzerine Etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 2017, 27(1): 88–94. https://doi.org/10.29133/yyutbd.285999

ZANOELO E. F., CARDOZO-FILHO L., and CARDOZO-JUNIOR E. L. Superheated Steam-Drying of Mate Leaves and Effect of Drying Conditions on the Phenol Content. Journal of Food Process Engineering, 2006, 29(3): 253–268. https://doi.org/10.1111/j.1745-4530.2006.00064.x

CARRANZA-CONCHA J., BENLLOCH M., CAMACHO M. M., and MARTÍNEZ-NAVARRETE N. Effects of drying and pretreatment on the nutritional and functional quality of raisins. Food and Bioproducts Processing, 2012, 90(2): 243–248. https://doi.org/10.1016/j.fbp.2011.04.002

MILETIĆ N., MITROVIĆ O., POPOVIĆ B., NEDOVIĆ V., ZLATKOVIĆ B., and KANDIĆ M. Polyphenolic Content and Antioxidant Capacity in Fruits of Plum (Prunus Domestica L.) Cultivars “Valjevka” and “Mildora” as Influenced by Air Drying. Journal of Food Quality, 2013, 36(4): 229–237. https://doi.org/10.1111/jfq.12035

IVANOV I. G., VRANCHEVA R. Z., MARCHEV A. S., PETKOVA N. T., ANEVA I. Y., DENEV P. P., GEORGIEV V. G., and PAVLOV A. I. Antioxidant activities and phenolic compounds in Bulgarian Fumaria species. International Journal of Current Microbiology and Applied Sciences, 2014, 3(2): 296–306. https://www.ijcmas.com/vol-3-2/Ivan%20G.%20Ivanov,%20et%20al.pdf

HAHM S.-W., PARK J., OH S.-Y., LEE C.-W., PARK K.-Y., KIM H., and SON Y.-S. Anticancer Properties of Extracts from Opuntia Humifusa against Human Cervical Carcinoma Cells. Journal of Medicinal Food, 2014, 18(1): 31–44. https://doi.org/10.1089/jmf.2013.3096

KAMILOGLU S., TOYDEMIR G., BOYACIOGLU D., BEEKWILDER J., HALL R. D., and CAPANOGLU E. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Critical Reviews in Food Science and Nutrition, 2016, 56(sup1): S110–S129. https://doi.org/10.1080/10408398.2015.1045969

FERNÁNDEZ-LÓPEZ J. A., ALMELA L., OBÓN J. M., and CASTELLAR R. Determination of Antioxidant Constituents in Cactus Pear Fruits. Plant Foods for Human Nutrition, 2010, 65(3): 253–259. https://doi.org/10.1007/s11130-010-0189-x

SUBHASHINI N., THANGATHIRUPATHI A., and LAVANYA N. Antioxidant activity of Trigonella foenum graecum using various in vitro and ex vivo models. International Journal of Pharmacy and Pharmaceutical Sciences, 2011, 3(2): 96–102. https://innovareacademics.in/journal/ijpps/Vol3Issue2/1195.pdf

YILDIRIM A., MAVI A., OKTAY M., AYDAN KARA A., FARUK ALGUR Ö., and BILALOǦLU V. Comparison of Antioxidant and Antimicrobial Activities of Tilia (Tilia Argentea Desf Ex DC), Sage (Salvia Triloba L.), and Black Tea (Camellia Sinensis) Extracts. Journal of Agricultural and Food Chemistry, 2000, 48(10): 5030–5034. https://doi.org/10.1021/jf000590k

DUH P.-D., DU P.-C., and YEN G.-C. Action of Methanolic Extract of Mung Bean Hulls as Inhibitors of Lipid Peroxidation and Non-Lipid Oxidative Damage. Food and Chemical Toxicology, 1999, 37(11): 1055–1061. https://doi.org/10.1016/S0278-6915(99)00096-4


Refbacks

  • There are currently no refbacks.