A Self-Balancing PSO-Tunned PI Controller for Integrating Parallel Converters with Variable Renewable Sources

Farhan Mumtaz, Nor Zaihar Yahaya

Abstract

This study aims to propose a system designed to fulfill the current and future energy requirements of commercial and domestic consumers. Recently, renewable energy generation methods obtained a higher priority in industrial applications to reduce and replace using hazardous fossil fuel-based energy generation methods. Conventional power generators generate AC voltage, which is incompatible with many modern appliances, requiring power conversion circuits. Power conversion circuits can make the overall system expensive and induce superfluous complexity in the system structure and control. In contrast, most renewable energy sources, such as photovoltaic and fuel cells, have inherent DC output voltage, and thus, the importance of DC systems inevitably surpasses the application of AC systems. In this framework, this paper focuses on the generation of multiple DC voltage levels. Three DC voltage levels were considered according to the IEC 60038 standard of the International Electrotechnical Commission. To generate multiple DC voltage levels, a parallel combination of power cells is used, where each power cell consists of a DC-DC converter. For adequate control, a particle swarm optimization tunned proportional integral (PSO-PI) controller applies. Three case studies evaluated the performance of the proposed system based on transient response and voltage ripples. For case study 1, the input and output conditions are kept constant; for case study 2, the input voltage is iterated, and the output load is kept constant; for case study 3, the input voltage is iterated, respectively the output load is also iterated with different load settings. In all case studies, the transient response is less than 0.15 s, and the voltage ripple is less than 5%.  

 

Keywords: DC-DC converters, power cells, renewable energy, particle swarm optimization, controller.

 

https://doi.org/10.55463/issn.1674-2974.50.2.8


Full Text:

PDF


References


SRINIVASAN M., and KWASINSKI A. Control analysis of parallel DC-DC converters in a DC microgrid with constant power loads. International Journal of Electrical Power & Energy Systems, 2020, 122: 106207. DOI: 10.1016/j.ijepes.2020.106207.

BURMESTER D., RAYUDU R., SEAH W., and AKINYELE D. A review of nanogrid topologies and technologies. Renewable and Sustainable Energy Reviews, 2017, 67: 760-775. DOI: 10.1016/j.rser.2016.09.073.

LIPU M.S.H., MIAH M.S., ANSARI S., MERAJ S.T., HASAN K., ELAVARASAN R.M., AL MAMUN, A. ZAINURI M.A.A.M., and HUSSAIN A. Power Electronics Converter Technology Integrated Energy Storage Management in Electric Vehicles: Emerging Trends, Analytical Assessment and Future Research Opportunities. Electronics, 2022, 11(4): 562.

LIPU M.S.H., ANSARI S., MIAH M.S., HASAN K., MERAJ S.T., FAISAL M., JAMAL T., ALI S.H.M., HUSSAIN A., MUTTAQI K.M., and HANNAN M.A. A review of controllers and optimizations based scheduling operation for battery energy storage system towards decarbonization in microgrid: Challenges and future directions. Journal of Cleaner Production, 2022, 360: 132188. DOI: 10.1016/j.jclepro.2022.132188.

DHARMASENA S., OLOWU T.O., and SARWAT A.I. Bidirectional AC / DC Converter Topologies : A Review. In: 2019 SoutheastCon IEEE Conference, 2019.

SADABADI M.S. A Distributed Control Strategy for Parallel DC-DC Converters. IEEE Control Systems Letters, 2021, 5 (4): 1231-1236.

MOAYEDI S., NASIRIAN V., LEWIS F.L., and DAVOUDI A. Team-Oriented Load Sharing in Parallel DC–DC Converters. IEEE Transactions on Industry Applications, 2015, 51(1): 479-490. DOI: 10.1109/TIA.2014.2336982

MUMTAZ F., YAHAYA N.Z., MERAJ S.T., KANNAN R., SINGH B.S.M., and IBRAHIM O. Multi-Input Multi-Output DC-DC Converter Network for Hybrid Renewable Energy Applications. In: 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies. 2021: 1-6. DOI: 10.1109/3ict51146.2020.9312026.

MERAJ S.T., YAHAYA N.Z., HASAN K., LIPU M.S.H., ELAVARASAN R.M., HUSSAIN A., HANNAN M.A., and MUTTAQI K.M. A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability. Applied Energy, 2022, 312: 118784. DOI: 10.1016/j.apenergy.2022.118784.

LU Y., KHAN Z.A., ALVAREZ-ALVARADO M.S., ZHANG Y., HUANG Z., and IMRAN M. A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability, 12(12): 1-30, 2020. DOI: 10.3390/su12125078.

SHER F., CURNICK O., and AZIZAN M.T. Sustainable conversion of renewable energy sources. Sustainability, 13(5): 1-4, 2021. DOI: 10.3390/su13052940.

MOUSSA S., BEN GHORBAL M.J., and SLAMA-BELKHODJA I. Bus voltage level choice for standalone residential DC nanogrid. Sustainable Cities and Society, 2019, 46: 101431. DOI: 10.1016/j.scs.2019.101431.

IEC. LVDC: electricity for the 21st century. Technology Report. The International Electrotechnical Commission, 2016: 1-58. https://www.iec.ch/basecamp/lvdc-electricity-21st-century

KUMMARA V.G.R., ZEB K., MUTHUSAMY A., KRISHNA T.N.V., PRABHUDEVA KUMAR S.V.S.V., KIM D.-H., KIM M.-S., CHO H.-G., and KIM H.-J. A comprehensive review of DC-DC converter topologies and modulation strategies with recent advances in solar photovoltaic systems. Electronics, 2020, 9(1): 31. https://doi.org/10.3390/electronics9010031

HOSSAIN M.Z., RAHIM N.A., and SELVARAJ J. Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renewable and Sustainable Energy Reviews, 2018, 81: 205-230. DOI: 10.1016/j.rser.2017.07.017.

KOLLI, A. GAILLARD A., DE BERNARDINIS A., BETHOUX O., HISSEL D., and KHATIR Z. A review on DC/DC converter architectures for power fuel cell applications. Energy Conversion and Management, 2015, 105: 716-730. DOI: 10.1016/j.enconman.2015.07.060.

JEREMY L.J., OOI C.A., and TEH J. Non-isolated conventional DC-DC converter comparison for a photovoltaic system: A review. Journal of Renewable and Sustainable Energy, 2020, 12(1). DOI: 10.1063/1.5095811.

DIVYA NAVAMANI J., VIJAYAKUMAR K., and JEGATHEESAN R. Non-isolated high gain DC-DC converter by quadratic boost converter and voltage multiplier cell. Ain Shams Engineering Journal, 2018, 9(4): 1397-1406. DOI: 10.1016/j.asej.2016.09.007.

HOSSAIN M.Z., RAHIM N.A., and SELVARAJ J. Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renewable and Sustainable Energy Reviews, 2018, 81: 205-230. DOI: 10.1016/j.rser.2017.07.017.

HAO Y., LI, H. LI K., FANG C., and DING X. Single-switch boost converter with extremely high step-up voltage gain. Journal of Power Electronics, 2020, 20(6): 1375-1385. DOI: 10.1007/s43236-020-00155-y.

CELIK M.A., GENC N., and UZMUS H. Experimental verification of interleaved hybrid DC/DC boost converter. Journal of Power Electronics, 2022, 22(6). DOI: 10.1007/s43236-022-00471-5.

OTHMAN M.H., MOKHLIS H., MUBIN M., AB AZIZ N.F., MOHAMAD H., AHMAD S., and MANSOR N.N. Genetic Algorithm-Optimized Adaptive Network Fuzzy Inference System-Based VSG Controller for Sustainable Operation of Distribution System. Sustainability, 2022, 14(17): 10798. https://doi.org/10.3390/su141710798

ARUNKUMARI T., and INDRAGANDHI V. A fuzzy controlled high gain DC-DC converter for renewable power generation. Journal of Intelligent & Fuzzy Systems, 2019, 36(5): 4165-4176. DOI: 10.3233/JIFS-169975.

RANI P.H., NAVASREE S., GEORGE S., and ASHOK S. Fuzzy logic supervisory controller for multi-input non-isolated DC to DC converter connected to DC grid. International Journal of Electrical Power & Energy Systems, 2019, 112: 49-60. DOI: 10.1016/j.ijepes.2019.04.018.

EGHTEDARPOUR N. A synergetic control architecture for the integration of photovoltaic generation and battery energy storage in DC microgrids. Sustainable Energy, Grids and Networks, 2019, 20: 100250. DOI: 10.1016/j.segan.2019.100250.

ANDRES-MARTINEZ O., FLORES-TLACUAHUAC A., RUIZ-MARTINEZ O.F., and MAYO-MALDONADO J.C. Nonlinear Model Predictive Stabilization of DC-DC Boost Converters with Constant Power Loads. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(1): 822-830. DOI: 10.1109/jestpe.2020.2964674.

BARTOLUCCI L., CORDINER S., MULONE V., and SANTARELLI M. Short-therm forecasting method to improve the performance of a model predictive control strategy for a residential hybrid renewable energy system. Energy, 2019, 172: 997-1004. DOI: 10.1016/j.energy.2019.01.104.

HONG P., LI, J. XU L., OUYANG M., and FANG C. Modeling and simulation of parallel DC/DC converters for online AC impedance estimation of PEM fuel cell stack. International Journal of Hydrogen Energy, 2016, 41(4): 3004-3014. DOI: 10.1016/j.ijhydene.2015.11.129.

WANG H., HAN M., HAN R., GUERRERO J.M., and VASQUEZ J.C. A decentralized current-sharing controller endows fast transient response to parallel DC-DC converters. IEEE Transactions on Power Electronics, 2018, 33(5): 4362-4372. DOI: 10.1109/TPEL.2017.2714342.

AN F., SONG W., YU B., and YANG K. Model predictive control with power self-balancing of the output parallel DAB DC-DC converters in power electronic traction transformer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(4): 1806-1818. DOI: 10.1109/JESTPE.2018.2823364.

WANG J., SONG X, and ABD EL-LATIF A.A. Single-Objective Particle Swarm Optimization-Based Chaotic Image Encryption Scheme. Electronics, 2022, 11(16): 2628. https://doi.org/10.3390/electronics1116262

FERMEIRO J.B.L., POMBO J.A.N., CALADO M.R.A., and MARIANO S.J.P.S. A new controller for DC-DC converters based on particle swarm optimization. Applied Soft Computing, 2017, 52: 418-434. DOI: 10.1016/j.asoc.2016.10.025.

GARCÍA-TRIVIÑO P., GIL-MENA A.J., LLORENS-IBORRA F., GARCÍA-VÁZQUEZ C.A., FERNÁNDEZ-RAMÍREZ L.M., and JURADO F. Power control based on particle swarm optimization of grid-connected inverter for hybrid renewable energy system. Energy Conversion and Management, 2015, 91: 83-92. DOI: 10.1016/j.enconman.2014.11.051.

MERAJ S.T., YAHAYA N.Z., HASAN K., LIPU M.S.H., MASAOUD A., ALI S.H.M., HUSSAIN A., OTHMAN M.M., and MUMTAZ F. Three-phase six-level multilevel voltage source inverter: Modeling and experimental validation. Micromachines (Basel), 2021, 12(9): 1133. DOI: 10.3390/mi12091133.

KARAMI-MOLLAEE A. Observer Dynamic Sliding Mode Control of DC-DC Converter to Extract the Maximum Power of Photovoltaic System Using Dual Sliding Observer. Electronics, 2022, 11(16): 2506. https://doi.org/10.3390/electronics11162506

AZER P., and EMADI A. Generalized State Space Average Model for Multi-Phase Interleaved Buck, Boost and Buck-Boost DC-DC Converters: Transient, Steady-State and Switching Dynamics. IEEE Access, 2020, 8: 77735-77745. DOI: 10.1109/access.2020.2987277.

OUDDA M., and HAZZAB A. Photovoltaic system with SEPIC converter controlled by the fuzzy logic. International Journal of Power Electronics and Drive Systems, 2016, 7(4): 1283-1293. DOI: 10.11591/ijpeds.v7i4.pp1283-1293.

KESHAVARZI M.D., and ALI M.H. A novel bidirectional dc-dc converter for dynamic performance enhancement of hybrid ac/dc microgrid. Electronics, 2020, 9(10): 1-20. DOI: 10.3390/electronics9101653.


Refbacks

  • There are currently no refbacks.