Evaluation of Pseudomonas aeruginosa Antibiofilm Activity of Chlorogenic Acid-Protamine Sulfate Combination Using Ex Vivo Porcine Skin Model

Nisreen Ahmad Dahshan, Suha Mujahed Abudoleh, Ahmad Talhouni, Zahira Alkhani


Pseudomonas aeruginosa plays an important role in chronic wound infection due to the development of biofilms. Biofilm infections are characterized by decreased antibiotic susceptibility and resistance to host immune responses. The purpose of this research was to investigate the effect of combining chlorogenic acid and protamine sulfate on Pseudomonas aeruginosa biofilm, looking for a novel, safe strategy to fight biofilm formation by Pseudomonas aeruginosa without using antibiotics to reduce the dependency on antibiotics, with improving efficacy. This combination's biofilm inhibitory activity was evaluated against Pseudomonas aeruginosa biofilm cultured on an ex vivo porcine skin explant model that mimics wound conditions. The activity was detected using a sessile viability count. No significant difference in the bacterial load was detected when the explants were treated either with chlorogenic acid (12 mg/mL) or protamine sulfate (0.5 mg/mL). On the other hand, a combination of chlorogenic acid (12 mg/mL) and protamine sulfate (0.5 mg/mL) showed a significant decrease in the bacterial load with 3 Log cycle reduction compared to the control untreated group. This combination was not tested before, and it is a promising alternative therapy inhibiting biofilm formation from being clinically translated in wound management.


Keywords: porcine skin explant, antibiofilm, chlorogenic acid, protamine sulfate.

Full Text:



BOTELHO J., GROSSO F., and PEIXE L. Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology, and evolution, Drug Resistance Updates, 2019, 44. DOI: 10.1016/j.drup.2019.07.002.

HORCAJADA J.P., MONTERO M., OLIVER A., SORLÍ L., LUQUE S., GÓMEZ-ZORRILLA S., BENITO N., and GRAU S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clinical Microbiology Reviews, 32(4): 1-52, 2019. DOI: 10.1128/CMR.00031-19.

MIELKO K.A., JABŁOŃSKI S.J., MILCZEWSKA J., SANDS D., ŁUKASZEWICZ M., and MŁYNARZ P. Metabolomic studies of Pseudomonas aeruginosa. World Journal of Microbiology & Biotechnology, 2019, 35(11): 1-11. DOI: 10.1007/s11274-019-2739-1.

LEE J., and ZHANG L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 2015, 6(1): 26-41. DOI: 10.1007/s13238-014-0100-x.

SERRA R., GRANDE R., BUTRICO L., ROSSI A., SETTIMIO U.F., CAROLEO B., AMATO B., GALLELLI L., and DE FRANCISCIS S. Chronic wound infections: The role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Review of Anti-Infective Therapy, 2015, 13(5): 605-613. DOI: 10.1586/14787210.2015.1023291.

BJARNSHOLT T. The role of bacterial biofilms in chronic infections. APMIS - Journal of Pathology, Microbiology and Immunology, 121(136): 1-58, 2013. DOI: 10.1111/apm.12099.

HASANNEJAD-BIBALAN M., JAFARI A., SABATI H., GOSWAMI R., JAFARYPARVAR Z., SEDAGHAT F., and EBRAHIM-SARAIE H.S. Risk of type III secretion systems in burn patients with Pseudomonas aeruginosa wound infection: A systematic review and meta-analysis. Burns, 2021, 47(3): 538-544. DOI: 10.1016/j.burns.2020.04.024.

BALLOK A.E., and O’TOOLE G.A. Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl- flux in the lung. Journal of Bacteriology, 2013, 195(18): 4013-4019. DOI: 10.1128/JB.00339-13.

LYCZAK J.B., CANNON C.L., and PIER G.B. Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes and Infection, 2000, 2(9): 1051-1060. DOI: 10.1016/S1286-4579(00)01259-4.

LEE S.K., and YOON S. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness. Journal of Microbiology and Biotechnology, 2017, 27(6): 1053-1064. DOI: 10.4014/jmb.1611.11056.

CIOFU O., and TOLKER-NIELSEN T. Tolerance and resistance of pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics, Frontiers in Microbiology, 2019, 10(MAY. DOI: 10.3389/fmicb.2019.00913.

NAVEED M., HEJAZI V., ABBAS M., KAMBOH A.A., KHAN G.J., SHUMZAID M., AHMAD F., BABAZADEH D., FANGFANG X., MODARRESI-GHAZANI F., WENHUA L., and XIAOHUI Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, 2018, 97: 67-74. DOI: 10.1016/j.biopha.2017.10.064.

NABAVI S.F., TEJADA S., SETZER W.N., GORTZI O., SUREDA A., BRAIDY N., DAGLIA M., MANAYI A., and NABAVI S.M. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine. Current Neuropharmacology, 2016, 15(4): 471-479. DOI: 10.2174/1570159x14666160325120625.

MIAO M., and XIANG L. Pharmacological action and potential targets of chlorogenic acid, 1st ed. Elsevier Inc., 2020.

SUN Z., ZHANG X., WU H., WANG H., BIAN H., ZHU Y., XU W., LIU F., WANG D., and FU L. Antibacterial activity and action mode of chlorogenic acid against Salmonella Enteritidis, a foodborne pathogen in chilled fresh chicken. World Journal of Microbiology & Biotechnology, 2020, 36(2): Article number 24. DOI: 10.1007/s11274-020-2799-2.

ZHU S., SHEN Y., YU Y., and BAI X. Synthesis of antibacterial gold nanoparticles with different particle sizes using chlorogenic acid. Royal Society Open Science, 2020, 7(3): 191141. DOI: 10.1098/rsos.191141.

WU Y., LIANG S., ZHANG M., WANG Z., WANG Z., and REN X. The Effect of Chlorogenic Acid on Bacillus subtilis Based on Metabolomics. Molecules, 2020, 25(18): 4038. DOI: 10.3390/molecules25184038.

ÖZÇELIK B., KARTAL M., and ORHAN I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical Biology, 2011, 49(4): 396-402. DOI: 10.3109/13880209.2010.519390.

SU M., LIU F., LUO Z., WU H., ZHANG X., WANG D., ZHU Y., SUN Z., XU W., and MIAO Y. The Antibacterial Activity and Mechanism of Chlorogenic Acid against Foodborne Pathogen Pseudomonas aeruginosa. Foodborne Pathogens and Disease, 2019, 16(12): 823-830. DOI: 10.1089/fpd.2019.2678.

WANG H., CHU W., GAETA C.Y.B., TAO H., WANG M., and QIU Z. Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing. Applied Microbiology and Biotechnology, 2019, 103(2): 903-915. DOI: 10.1007/s00253-018-9482-7.

SOKOLOWSKA E., KALASKA B., MIKLOSZ J., and MOGIELNICKI A. The toxicology of heparin reversal with protamine: past, present and future. Expert Opinion on Drug Metabolism & Toxicology, 2016, 12(8): 897-909. DOI: 10.1080/17425255.2016.1194395.

Aziz M., GARDUNO R., MIRANI Z.A., BAQAI R., SHEIKH A.S., NAZIR H., RAZA Y., AYAZ M., and KAZMI S.U. Determination of antimicrobial effect of protamine by transmission electron microscopy and SDS PAGE on Pseudomonas aeruginosa isolates from diabetic foot infection. Iranian Journal of Basic Medical Sciences, 2019, 22(7): 827-832. DOI: 10.22038/ijbms.2019.32414.7989.

SOBOH F., KHOURY A.E., ZAMBONI A.C., DAVIDSON D., and MITTELMAN M.W. Effects of ciprofloxacin and protamine sulfate combinations against catheter-associated Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 1995, 39(6): 1281-1286. DOI: 10.1128/AAC.39.6.1281.

YAKANDAWALA N., GAWANDE P.V., LOVETRI K., and MADHYASTHA S. Effect of ovotransferrin, protamine sulfate and EDTA combination on biofilm formation by catheter-associated bacteria. Journal of Applied Microbiology, 2007, 102(3): 722-727. DOI: 10.1111/j.1365-2672.2006.03129.x.

BOUSSARD P., DEVLEESCHOUWER M., and DONY J. Influence of protamine on the in vitro sensitivity of Pseudomonas aeruginosa to antibiotics. Pharmaceutica Acta Helvetiae, 1994, 68(3): 161-167. DOI: 10.1016/0031-6865(94)90038-8.

DAROUICHE R.O., MANSOURI M.D., GAWANDE P.V., and MADHYASTHA S. Efficacy of combination of chlorhexidine and protamine sulphate against device-associated pathogens. Journal of Antimicrobial Chemotherapy, 2008, 61(3): 651-657. DOI: 10.1093/jac/dkn006.

YANG Q., PHILLIPS P.L., SAMPSON E.M., PROGULSKE-FOX ANN., JIN S., ANTONELLI P., and SCHULTZ G.S. Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms. Wound Repair and Regeneration, 2013, 21(5): 704-714. DOI: 10.1111/wrr.12074.

PHILLIPS P.L., YANG Q,, DAVIS S., SAMPSON E.M., AZEKE J.I., HAMAD A., and SCHULTZ G.S. Antimicrobial dressing efficacy against mature Pseudomonas aeruginosa biofilm on porcine skin explants. International Wound Journal, 2013, 12 (4): 469-483. DOI: 10.1111/iwj.12142.

RASAMIRAVAKA T., LABTANI Q., DUEZ P., and EL JAZIRI M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Research International, 2015, 2015: 759348. DOI: 10.1155/2015/759348.

PHILLIPS P.L., YANG Q., DAVIS S., SAMPSON E.M., AZEKE J.I., HAMAD A., and SCHULTZ G.S. Antimicrobial dressing efficacy against mature Pseudomonas aeruginosa biofilm on porcine skin explants. International Wound Journal, 2015, 12(4): 469-483. DOI: 10.1111/iwj.12142.


  • There are currently no refbacks.