Computer-Assisted Framework for Automatic Detection of Structural Hand Deformities

Madeha Muzafar Memon, Muhammad Moazzam Jawaid, Sanam Narejo, Mahaveer Rathi


The hand is the most complex and important prehensile organ in the human skeleton. Deformities in any phalange of hand effects the reduction of everyday routine work and job loss. This research aims to propose an efficient method that automatically detects various hand abnormalities using different mathematical and morphological image processing techniques before treatment, as detecting short bones abnormalities is extremely challenging for orthopedics. Therefore, we investigated five congenital and acquired abnormalities, including enumeration of fingers, absence of phalanges, angle computation between the fingers, finger flexion from normal trend, and fracture computation on 950 hand radiographs obtained from MURA. Statistical parameters were evaluated to obtain precision, specificity, sensitivity and achieved 95.95% accuracy.


Keywords: medial axis transform, skeletonization, image, morphology, segmentation.

Full Text:



HARRIS-ADAMSON C., EISEN E. A., KAPELLUSCH J., GARG A., HEGMANN K. T., THIESE M. S., DALE A. M., EVANOFF B., BURT S., BAO S., and SILVERSTEIN B. Biomechanical risk factors for carpal tunnel syndrome: a pooled study of 2474 workers. Occupational and Environmental Medicine, 2015, 72(1): 33-41.

FEIX T., ROMERO J., SCHMIEDMAYER H. B., DOLLAR A. M., and KRAGIC D. The grasp taxonomy of human grasp types. IEEE Transactions on Human-Machine Systems, 2015, 46(1): 66-77.

SANDVALL B. K., KEYS K. A., and FRIEDRICH J. B. Severe hand injuries from fireworks: injury patterns, outcomes, and fireworks types. The Journal of Hand Surgery, 2017, 42(5): 385.E1-385.E8.

GOLDFARB C. A., SHAW N., STEFFEN J. A., and WALL L. B. The Prevalence of Congenital Hand and Upper Extremity Anomalies Based Upon the New York Congenital Malformations Registry. Journal of Pediatric Orthopaedics, 2017, 37(2): 144-148.

BENJAMIN H. J., & HANG B. T. Common acute upper extremity injuries in sports. Clinical Pediatric Emergency Medicine, 2007, 8(1): 15-30.

ZARE M. R., MUEEN A., SENG W. C., and AWEDH M. H. Combined feature extraction on medical x-ray images. Proceedings of the 3rd International Conference on Computational Intelligence, Communication Systems and Networks, Bali, 2011, pp. 264-268.

CHAI H. Y., WEE L. K., SWEE T. T., and HUSSAIN S. Gray-level co-occurrence matrix bone fracture detection. WSEAS Transactions on Systems, 2011, 10(1): 7-16.

AL-AYYOUB M., HMEIDI I., and RABABAH H. Detecting Hand Bone Fractures in X-Ray Images. Journal of Multimedia Processing and Technologies, 2013, 4(3): 155-168.

AL-AYYOUB M., & AL-ZGHOOL D. Determining the type of long bone fractures in x-ray images. WSEAS Transactions on Information Science and Applications, 2013, 10(8): 261-270.

BHISIKAR S. A., & KALE S. N. Automatic joint detection and measurement of joint space width in arthritis. Proceedings of the IEEE International Conference on Advances in Electronics, Communication and Computer Technology, Pune, 2016, pp. 429-432.

TRIPATHI A. M., UPADHYAY A., RAJPUT A. S., SINGH A. P., and KUMAR B. Automatic detection of fracture in femur bones using image processing. Proceedings of the International Conference on Innovations in Information, Embedded and Communication Systems, Coimbatore, 2017, pp. 1-5.

JOHARI N., & SINGH N. Bone fracture detection using edge detection technique. In: PANT M., RAY K., SHARMA T., RAWAT S., and BANDYOPADHYAY A. (eds.) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, Vol. 584. Singapore: Springer, pp. 11-19.

RAJPURKAR P., IRVIN J., BAGUL A., DING D., DUAN T., MEHTA H., YANG B., ZHU K., LAIRD D., BALL R. L., and LANGLOTZ C. MURA: Large dataset for abnormality detection in musculoskeletal radiographs.

YANG X., SHEN X., LONG J., and CHEN H. An improved median-based Otsu image thresholding algorithm. AASRI Procedia, 2012, 3: 468-473.

NARUSE T., TAKAHARA M., TAKAGI M., and OGINO T. Early morphological changes leading to central polydactyly, syndactyly, and central deficiencies: an experimental study in rats. The Journal of Hand Surgery, 2007, 32(9): 1413-1417.

AMENTA N., CHOI S., and KOLLURI R. K. The power crust, unions of balls, and the medial axis transform. Computational Geometry, 2001, 19(2-3): 127-153.

CHEN W., SUI L., XU Z., and LANG Y. Improved Zhang-Suen thinning algorithm in binary line drawing applications. Proceedings of the International Conference on Systems and Informatics, Yantai, 2012, pp. 1947-1950.

JAWAS N., & SUCIATI N. Image inpainting using erosion and dilation operation. International Journal of Advanced Science and Technology, 2013, 51: 127-134.

STIDHAM R. W., ENCHAKALODY B., WALJEE A. K., HIGGINS P. D., WANG S. C., SU G. L., WASNIK A. P., and AL-HAWARY M. Assessing Small Bowel Stricturing and Morphology in Crohn’s Disease Using Semi-Automated Image Analysis. Inflammatory Bowel Diseases, 2020, 26(5): 734-742.

HIRAI Y., YOSHIDA K., YAMANAKA K., INOUE A., YAMAKI K. I., and YOSHIZUKA M. An anatomic study of the extensor tendons of the human hand. The Journal of Hand Surgery, 2001, 26(6): 1009-1015.

CHEN F. C., APPENDINO S., BATTEZZATO A., FAVETTO A., MOUSAVI M., and PESCARMONA F. Constraint study for a hand exoskeleton: human hand kinematics and dynamics. Journal of Robotics, 2013, 2013: 910961.

KELAIN M. J. Compatibility of Enhancement and Segmentation of Digital Image Processing in Medical Applications. Journal of Southwest Jiaotong University, 2020, 55(1).


  • There are currently no refbacks.