The Influence of Urbanism on the Urban Heat Island Phenomenon: Evidence from the KSA

Ammar Maghrabi, Mohd Farid Mohamed, Sudharshan N. Raman, Mohd Khairul Azhar Mat Sulaiman, Wardah Fatimah Mohammad Yusoff, Mohammed Awad Abuhussain, Mansour Almazroui


The density and pattern of urban development can significantly influence the thermal environment in these areas. Several research studies have underlined the asymmetry of urban air temperature by using parameters such as an increase in mean temperature, decline in amplitude, and substantial phase delay in closely constructed buildings. This research examines urban morphological impacts on the city thermal climate using the data collected on air temperature. The data for this study were collected using iButton data loggers implemented across two different locations representing urban and suburban areas. Also, the study utilized one meteorological station to archive the climatic information in a rural area as a reference point. The data collection camping was held in 2019 during June, July, and August, which are considered the hottest months of the year at the case study location.  The iButton data loggers were validated by calibrating the readings in a room chamber at the University Kbangsaan Malaysia (UKM) Malaysia. The study includes data analysis for the micro weather profile for all locations, including daytime, nighttime, and daily average air temperature.  Results from the study indicated that daytime and nighttime temperature variation among urban and rural areas reached 3.6℃ and 6.3℃, respectively.


Keywords: urban heat island, Makkah, Saudi Arabia, temperature.


Full Text:



DUTTA I., and DAS A. Exploring the Spatio-temporal pattern of regional heat island (RHI) in an urban agglomeration of secondary cities in Eastern India, Urban Clim., 2020, 34 (7): 100679, doi: 10.1016/j.uclim.2020.100679

BERNARD J., MUSY M., CALMET I., BOCHER E., and KERAVEC P. Urban heat island temporal and spatial variations: Empirical modeling from geographical and meteorological data, Build. Environ., Nov. 2017, 125: 423–438 doi: 10.1016/j.buildenv.2017.08.009

MILLS G. Luke Howard and The Climate of London, 2018, no. August, doi: 10.1002/wea.195

BAHI H., RHINANE H., BENSALMIA A., FEHRENBACH U., and SCHERER D. Effects of urbanization and seasonal cycle on the surface urban heat island patterns in the coastal growing cities: A case study of Casablanca, Morocco, Remote Sens., 2016, 8 (10), doi: 10.3390/rs8100829

BAHI H., RHINANE H., and BENSALMIA A. Contribution of MODIS satellite image to estimate the daily air temperature in the Casablanca City, Morocco, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 2016, 42 (2W1): 3–11, doi: 10.5194/isprs-archives-XLII-2-W1-3-2016

YANG X., CHEN Y., PENG L. L. H., and WANG Q. Quantitative methods for identifying meteorological conditions conducive to the development of urban heat islands, Build. Environ., 2020, 178 (4): 106953. doi: 10.1016/j.buildenv.2020.106953

MOHAJERANI A., BAKARIC J., and JEFFREY-BAILEY T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete, J. Environ. Manage., 2017, 197, (7): 522–538. doi: 10.1016/j.jenvman.2017.03.095

STEWART I. D., and OKE T. R. Local climate zones for urban temperature studies, Bull. Am. Meteorol. Soc., 2012, 93 (12): 1879–1900. doi: 10.1175/BAMS-D-11-00019.1

LEE R. L., OLFE. Linearized calculations of urban heat island convection effects., J. Atmos. Sci., 1971, 28:1374–13, [Online]. Available:

SHEPHERD J. M., PIERCE H., and NEGRI A. J. Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite, J. Appl. Meteorol., 2002, 41 (7): 689–701. doi: 10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2

CHANGNON S. A., HUFF F. A., and SEMONIN R. G. METROMEX: an Investigation of Inadvertent Weather Modification, Bull. Am. Meteorol. Soc., 1971, 52 (10): 958–968. doi: 10.1175/1520-0477(1971)052<0958:maioiw>;2

SKELHORN C. P., LEVERMORE G., and LINDLEY S. J. Impacts on cooling energy consumption due to the UHI and vegetation changes in Manchester, UK, Energy Build., 2016, 122: 150–159, doi: 10.1016/j.enbuild.2016.01.035

MUSCO F. et al. UHI in the Metropolitan Cluster of Bologna- Modena: Mitigation and Adaptation Strategies. Cham: Springer International Publishing, 2016.

ZHOU Y., ZHUANG Z., YANG F., YU Y., and XIE X., Urban morphology on heat island and building energy consumption, Procedia Eng., 2017, 205: 2401–2406. doi: 10.1016/j.proeng.2017.09.862

WANG Y., BERARDI U., and AKBARI H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada, Energy Build., 2016, 114: 2–19. doi: 10.1016/j.enbuild.2015.06.046

BAKARMAN M. A. and CHANG J. D. The influence of height / width ratio on urban heat island in hot-arid climates, 2015, 118: 101–108. doi: 10.1016/j.proeng.2015.08.408

KARL T. R., DIAZ H. F., and KUKLA G. Urbanization: Its Detection and Effect in the United States Climate Record, J. Clim., 1988.

BAHI H., MASTOURI H., and RADOINE H. Materials Today: Proceedings Review of methods for retrieving urban heat islands, Mater. Today Proc., 2020, 27: 3004–3009. doi: 10.1016/j.matpr.2020.03.272

EL BOUAZOULI A., BAIDDER L., PASQUIER P., and RHOUZLANE S. Remote sensing contribution to the identification of potential geothermal deposits: A case study of the Moroccan Sahara, Mater. Today Proc., 2019, 13: 784–794. doi: 10.1016/j.matpr.2019.04.041

SETO K. C., and CHRISTENSEN P. Remote sensing science to inform urban climate change mitigation strategies, Urban Clim., 2013, 3: 1–6. doi: 10.1016/j.uclim.2013.03.001

ABUHUSSAIN M. A., HOU D., CHOW C. H. I., and SHARPLES S. PLEA 2018 HONG KONG Assessing the adaptability of the Saudi residential building ` s energy code for future climate change scenarios, 2018.

LIU L. et al. Analysis of local-scale urban heat island characteristics using an integrated method of mobile measurement and GIS-based spatial interpolation, Build. Environ., 2017, 117: 191–207. doi: 10.1016/j.buildenv.2017.03.013

STEWART I. D. A systematic review and scientific critique of methodology in modern urban heat island literature, Int. J. Climatol., 2011, 31 (2): 200–217. doi: 10.1002/joc.2141

DESPINI F. et al. Correlation between remote sensing data and ground based measurements for solar reflectance retrieving, Energy Build., 2016, 114: 227–233. doi: 10.1016/j.enbuild.2015.06.018

ZHOU D., ZHAO S., LIU S., ZHANG L., and ZHU C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers, Remote Sens. Environ., 2014, 152: 51–61. doi: 10.1016/j.rse.2014.05.017

KAMARIANAKIS Y., LI X., TURNER B. L., and BRAZEL A. J. On the effects of landscape configuration on summer diurnal temperatures in urban residential areas: application in Phoenix, AZ, Front. Earth Sci., 2019, 13 (3): 445–463. doi: 10.1007/s11707-017-0678-4

CUI Y., YAN D., HONG T., and MA J. Temporal and spatial characteristics of the urban heat island in Beijing and the impact on building design and energy performance, Energy, 2017, 130: 286–297. doi: 10.1016/

GUATTARI C., EVANGELISTI L., and BALARAS C. A. On the assessment of urban heat island phenomenon and its effects on building energy performance: A case study of Rome (Italy), Energy Build., 2018, 158 (1): 605–615. doi: 10.1016/j.enbuild.2017.10.050

SANTAMOURIS M., CARTALIS C., SYNNEFA A., and KOLOKOTSA D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings - A review, Energy Build., 2015, 98: 119–124. doi: 10.1016/j.enbuild.2014.09.052

HOWARTH N., ODNOLETKOVA N., ALSHEHRI T., ALMADANI A., LANZA A., and PATZEK T. Staying Cool in A Warming Climate: Temperature, Electricity and Air Conditioning in Saudi Arabia, Climate, 2020, 8 (1): 4. doi: 10.3390/cli8010004

KRARTI M., and HOWARTH N. Transitioning to high efficiency air conditioning in Saudi Arabia: A benefit cost analysis for residential buildings, J. Build. Eng., 2020, 31 (4): 101457. doi: 10.1016/j.jobe.2020.101457

KRARTI M., ALDUBYAN M., and WILLIAMS E. Residential building stock model for evaluating energy retrofit programs in Saudi Arabia, Energy, 2020, 195: 116980. doi: 10.1016/

AL-AHMADI K., SEE L., HEPPENSTALL A., and HOGG J. Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia, Ecol. Complex., 2009, 6 (2): 80–101. doi: 10.1016/j.ecocom.2008.09.004

ALQURASHI A. F., and KUMAR L. Land Use and Land Cover Change Detection in the Saudi Arabian Desert Cities of Makkah and Al-Taif Using Satellite Data, Adv. Remote Sens., 2014, 03 (03): 106–119. doi: 10.4236/ars.2014.33009

ALQURASHI A. F., KUMAR L., and AL-GHAMDI K. A. Spatiotemporal modeling of urban growth predictions based on driving force factors in five Saudi Arabian Cities, ISPRS Int. J. Geo-Information, 2016, 5 (8). doi: 10.3390/ijgi5080139

G. Authority for Statistics. Electrical energy statistics 2018, 2018. (accessed the 02nd of November, 2020).

G. Authority, for statistics, GASTAT: The total number of pilgrims in 1439H Hajj season reached (2.371.675) pilgrims, 2021. (accessed the

nd of March, 2021).

ALGAHTANI H. Strategic vision of planning the central area of Makkah City, Islam. Herit. Archit. Art, 2016, 1 ( Iha): 107–120. doi: 10.2495/iha160101

NATIONS ONLINE. Satellite View and Map of the City of Mecca (Makkah al-Mukarramah), Saudi Arabia, 2021. (accessed the 01st of March, 2021).

AL-GHAMDI K. Impacts of urban growth on flood hazards in Makkah City, Saudi Arabia, … J. Water …, 2012, 4 (2): 23–34. doi: 10.5897/IJWREE11.128

PEEL M. C., FINLAYSON B. L., and MCMAHON T. A. Updated world map of the K ¨ oppen-Geiger climate classification, 2007, 1633–1644.

AL-AHMADI K., and AL-AHMADI S. Rainfall-Altitude Relationship in Saudi Arabia, Adv. Meteorol., 2013, 3: 1–14, doi: 10.1155/2013/363029

ABDOU A. E. A. Temperature Trend on Makkah, Saudi Arabia, Atmos. Clim. Sci., 2014, 04 (03}: 457–481. doi: 10.4236/acs.2014.43044

World Weather & Climate Information. Climate in Mecca, Saudi Arabia, 2021.,mecca-sa,Saudi-Arabia (accessed the 21st of March, 2021).

CHERNIWCHAN, JEVAN. Economic growth, industrialization, and the environment, Resource and Energy Economics, 2012, Elsevier, 34(4): 442-467.

LIU X., and BAE J. Urbanization and industrialization impact of CO2 emissions in China. Journal of Cleaner Production, 2018. DOI:10.1016/j.jclepro.2017.10.156

MAHMOOD H., ALKHATEEB T. Role of education and economic growth on the CO2 emissions in Saudi Arabia. Journal of Entrepreneurship and Sustainability Issues, 2020, 8(2):195-209. DOI:10.9770/jesi.2020.8.2(12)

BRITISH PETROLEUM. Annual Report and Form 20-F 2020.

ALSHEHRY A.S., AND BELLOUMI M. Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia. Renewable and Sustainable Energy Reviews, 2015, 41: 237-247. DOI: 10.1016/j.rser.2014.08.004

ALYOUSEF Y., and ABU-EBI M. Energy Efficiency Initiatives for Saudi Arabia on Supply and Demand Sides. Energy Efficiency - A Bridge to Low Carbon Economy, 2012, 279-308.

YE X. et al. Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire. Atmos. Chem. Phys., 2021, 21: 14427–14469.

GARSTANG T. P. M. The structure of heat islands,

Rev. Geophys., 1975, 13 (1): 139–165.

OKE T. R. The energetic basis of the urban heat island, Q. J. R. Meteorol. Soc., 1982, 108 (455): 1–24. doi: 10.1002/qj.49710845502

DRAXLER R. R. Simulated and observed influence of

the nocturnal urban heat island on the local wind field.,” Clim. Appl. Meteor., 25: 1125–2233, 1986, [Online]. Available:


LIN Y. L., and SMITH R. B. Transient dynamics of airflow near a local heat source., J. Atmos. Sci., 1986, 43 (1): 40–49. doi: 10.1175/1520-0469(1986)043<0040:TDOANA>2.0.CO;2

DEOSTHALI V. Impact of rapid urban growth on heat and moisture islands in Pune City, India, Atmos. Environ., 2000, 34 (17): 2745–2754, doi:


CHANGNON, S. A., JR., HUFF, F. A., and SEMONIN, R. G. METROMEX: An investigation of inadvertent weather modification. Bull. Amer. Meteor. Soc., 1971, 52: 958-968.

GARTLAND L. Heat Islands: Understanding and mitigating heat in urban areas. London, Routledge, 2008.


BAKARMAN MOHAMMED, AND CHANG J.D. The Influence of Height/width Ratio on Urban Heat Island in Hot-arid Climates. Procedia Engineering, 2015, 118: 101-108. DOI:10.1016/j.proeng.2015.08.408

KOLOKOTRONI M., ZHANG Y., and WATKINS R. The London Heat Island and building cooling design, 2007, 81: 102–110. doi: 10.1016/j.solener.2006.06.005

SUNDBORG, Å. Local climatological studies of the temperature conditions in an urban area, Tellus, 1950, 2: 221-31.

CHEUNG HENRY KEI WANG. Electrical Probes for

Study of Two-Phase Flows, Univ. Manchester, 2011,


United States Environmental Protection Agency, Measuring Heat Islands, 2019. (accessed the 11th of November,2020)

PARKINSON C. J. B., LAYCOCK P. J., and LINDLEY S. The urban heat island in Manchester 1996-2011, Build. Serv. Eng. Res. Technol., 36 (3): 343–356, 2015, doi: 10.1177/0143624414549388

KOLOKOTRONI M. and GIRIDHARAN R. Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer, Sol. Energy, 2008, 82 (11): 986–998. doi: 10.1016/j.solener.2008.05.004

KARDINAL JUSUF S., WONG N. H., HAGEN E., ANGGORO R., and HONG Y. The influence of land use on the urban heat island in Singapore, Habitat Int., 2007, 31 (2): 232–242. doi: 10.1016/j.habitatint.2007.02.006

LIU Y., LI Q., YANG L., MU K., ZHANG M., and LIU J. Urban heat island effects of various urban morphologies under regional climate conditions, Sci. of the Total Environ., 2020, 743. doi: 10.1016/j.scitotenv.2020.140589.

YANG X. et al. Assessing the thermal behavior of different local climate zones in the Nanjing metropolis, China, Build. Environ., 2018, 137 (30): 171–184. doi: 10.1016/j.buildenv.2018.04.009

SANTAMOURIS M. et al. On the impact of urban climate on the energy consuption of building. Solar Energy, 2001, 70 (3): 201-216. DOI:10.1016/S0038-092X(00)00095-5

HOWARTH C., BRYANT P., FANKHAUSER S., and CORNER A. Building a Social Mandate for Climate Action: Lessons from COVID-19. Environmental and Resource Economics 76(3), 2020. DOI:10.1007/s10640-020-00446-9

PALME M., INOSTROZA L., VILLACRESES G., LOBATO-CORDERO A., and CARRASCO C. From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect, Energy Build., 2017, 145: 107–120. doi: 10.1016/j.enbuild.2017.03.069

LI X., ZHOU Y., YU S., JIA G., LI H., and LI W. Urban heat island impacts on building energy consumption: A review of approaches and findings, Energy, 2019, 174: 407–419. doi: 10.1016/

HUANG Q., HUANG J., YANG X., FANG C., AND LIANG Y. Quantifying the seasonal contribution of coupling urban land use types on Urban Heat Island using Land Contribution Index: A case study in Wuhan, China, Sustain. Cities Soc., 2018, 44 (5): 666–675. doi: 10.1016/j.scs.2018.10.016.

PARKER J. The Leeds urban heat island and its implications for energy use and thermal comfort, Energy Build., 2020, 7: 110636. doi: 10.1016/j.enbuild.2020.110636

KOLOKOTRONI M., AND WATKINS R. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy, 2006,

(4): 383-392. DOI:10.1016/j.solener.2005.03.010

FANCHIOTTI A., CARNIELLO E., and ZINZI M. Impact of Cool Materials on Urban Heat Islands and on Buildings Comfort and Energy Consumption,” Wref, 2012, 1–8. [Online]. Available: paper.pdf

RICHARDS D. R., FUNG T. K., BELCHER R. N., and EDWARDS P. J. Differential air temperature cooling performance of urban vegetation types in the tropics, Urban For. Urban Green., 2020, 50 (3). doi: 10.1016/j.ufug.2020.126651

BOKAIE M., ZARKESH M. K, ARASTEH P. D., and A. HOSSEINI. Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/ Land Cover in Tehran, Sustain. Cities Soc., 2016, 23: 94–104. doi: 10.1016/j.scs.2016.03.009


  • There are currently no refbacks.