Analyzing Effect of Temperature on Drying Moringa (Moringa Oleifera) Leaves Using Photovoltaic Tray Dryer

Martha Aznury, Ahmad Zikri, Nova Rachmadona, Muhammad Farhan Saputra


Moringa oleifera is a shrub with a height of 7-11 meters and thrives from the lowlands to 700 meters above sea level. Moringa leaves have various beneficial nutritional contents. Moringa leaves, dried into a powder, contain more nutrients than when the plant is fresh leaves. However, conventional drying of the material in the hot sun can reduce the quality of the dried material because the drying temperature cannot be controlled. Therefore, a photovoltaic tray dryer was designed with a drying device that utilizes sunlight through the photovoltaic solar energy system consisting of four trays. This research aims to analyze the effect of temperature on drying efficiency using a photovoltaic tray dryer. Before carrying out the drying process, the Moringa leaves are tested for the initial water content. Moringa leaves are weighed 100 grams for each tray. The drying process is carried out at temperature variations, 40°C, 50°C, 60°C, and 70°C within four hours to see the optimal temperature in the Moringa leaf drying process. Every 30 minutes, the Moringa leaves in tray 1, tray 2, tray 3, and tray 4 are weighed to determine the water content. The lowest water content in Moringa leaves was found in the drying process at 70oC, 40.73%. The best drying process occurs in tray 3 with an average water content after drying, 49.49%. Meanwhile, the highest drying efficiency occurred in the drying process at 40oC, 31.76%.

Keywords: Moringa leaves, drying, photovoltaic tray dryer, drying temperature, water content.

Full Text:



SAGONA W.C.J., CHIRWA P.W., and SAJIDU S.M. The miracle mix of Moringa: Status of Moringa research and development in Malawi. South African Journal of Botany, 2020, 129: 138-145.

MANUWA S.I., SEDARA A.M., and TOLA F.A. Design, fabrication, and performance evaluation of Moringa (oleifera) dried leaves pulverizer. Journal of Agriculture and Food Research, 2020, 2: 100034.

BABU A.K., KUMARESAN G., RAJ V.A.A., and VELRAJ R. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews, 2018, 90: 536-556.

DU TOIT E.S., SITHOLE J., and VORSTER J. Leaf harvesting severity affects total phenolic and tannin content of fresh and dry leaves of Moringa oleifera Lam. trees growing in Gauteng, South Africa. South African Journal of Botany, 2020, 129: 336-340.

ZHENG Y., SUN H., ZHANG Y., and WU J. Evaluation of the adaptability, productivity, and leaf powder quality of eight Moringa oleifera cultivars introduced to a dry-hot climate of Southwest China. Industrial Crops and Products, 2019, 128: 199-205.

ALI M.A., YUSOF Y.A., CHIN N.L., and IBRAHIM M.N. Processing of Moringa leaves as natural source of nutrients by optimization of drying and grinding mechanism. Journal of Food Process Engineering, 2017, 40: e12583.

DADI D.W., EMIRE S.A., HAGOS A.D., and EUN J.B. Physical and Functional Properties, Digestibility, and Storage Stability of Spray- and Freeze-Dried Microencapsulated Bioactive Products from Moringa stenopetala Leaves Extract. Industrial Crops and Products, 2020, 156: 112891.

THAMRIN I. and KHARISANDI A. Rancang Bangun Alat Pengering Ubi Kayu Tipe Rak Dengan Memanfaatkan Energi Surya. Proceedings Seminar Nasional Tahunan Teknik Mesin, 2010, 9: 1–6.

NAPITUPULU F.H. and ATMAJA Y.P. Perancangan dan Pengujian Alat Pengering Jagung dengan Tipe Cabinet Dryer untuk Kapasitas 9 Kg Per-Siklus. Jurnal Dinamis, 2012, 2 (8): 32-43.

NAPITUPULU F.H. and TUA P.M. Perancangan Dan Pengujian Alat Pengering Kakao Dengan Tipe Cabinet Dryer Untuk Kapasitas 7.5 Kg Per-Siklus. Jurnal Dinamis, 2012, 2: 8–18.

FOTOUO-M H., VORSTER J., DU TOIT E.S., and ROBBERTSE P.J. The effect of natural long-term packaging methods on antioxidant components and malondialdehyde content and seed viability Moringa oleifera oilseed. South African Journal of Botany, 2020, 129: 17–24.

DE ALMEIDA F.N.C., JOHANN G., SIQUEIRA N.W., SOUZA G.K., and PEREIRA N.C. Convective drying of Moringa oleifera seeds: kinetics modeling and effects on oil yield from different extraction techniques. Biomass Conversion and Biorefinery, 2021. [Online]. Available from:

MOHANA Y., MOHANAPRIYA R., ANUKIRUTHIKA T., YOHA K.S., MOSES J.A., and ANANDHARAMAKRISHNAN C. Solar dryers for food applications: Concepts, designs, and recent advances. Solar Energy, 2020. 208: 321-344.

POPOOLA L.T., GIWA A., and ADERIBIGBE T.A. Kinetics, Optimization and Proximate Analysis of Drying Moringa oleifera Seeds in a Tray Dryer. Industrial Chemistry, 2017, 3: 123.

ARAL S. & BEŞE A.V. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry, 2016, 210: 577-584.

MGHAZLI S., OUHAMMOU M., HIDAR N., LAHNINE L., IDLIMAM A., and MAHROUZ M. Drying characteristics and kinetics solar drying of Moroccan rosemary leaves. Renewable Energy, 2017, 108: 303-310.

OLIVEIRA C.A. & ROCHA S.C.S. Intermittent drying of beans in a spouted bed. Brazilian Journal of Chemical Engineering, 2007, 24: 571–585.

ALAKALI J.S., KUCHA C.T., and RABIU I.A. Effect of drying temperature on the nutritional quality of Moringa oleifera leaves. African Journal of Food Science, 2015, 9: 395–399.

OLABODE Z., AKANBI C.T., OLUNLADE B., and ADEOLA A.A. Effects of Drying Temperature on the Nutrients of Moringa (Moringa oleifera) Leaves and Sensory Attributes of Dried Leaves Infusion. Direct Research Journal of Agriculture and Food Science, 2015, 3: 117–122.

EMELIKE N.J.T. & EBERE C.O. Effect of Drying Techniques of Moringa Leaf on the Quality of Chin-Chin Enriched with Moringa Leaf Powder. Journal of Environmental Science, Toxicology and Food Technology, 2016, 10: 65–70.

HANARISETYA N. Pengaruh Cara Pengeringan dan Perebusan Terhadap Aktivitas Antioksidan dan Mutu Organoleptik Daun Kelor (Moringa Oleifera Lamk). Universitas Sahid Jakartya, 2019.

BADAN STANDARDISASI NASIONAL. Tepung terigu sebagai bahan makanan, 2009.


  • There are currently no refbacks.