The Spatio-Temporal Variability of Chlorophyll-A and Its Physical Variables in the South Java Sea Shelf

Asep Sandra Budiman, Dietriech Geoffrey Bengen, I. Wayan Nurjaya, Zainal Arifin, Muhammad Furqon Azis Ismail

Abstract

The Chlorophyll-a (Chl-a) dynamics in the upwelling system associate with physical variables that accompany it, whether it is a driver or a response to the upwelling process. As an upwelling driver, wind and current could enhance the Chl-a concentration through a process known as wind-driven and current-driven upwelling, respectively. On the other hand, Sea Surface Temperature (SST) and Sea Surface Height Anomaly (SSHA) come as the upwelling response. We examine these four physical variables against the Chl-a dynamics in the South Java Sea shelf using satellite-derived and ocean reanalysis data from 2002 to 2017. Chl-a variability was examined using Empirical Orthogonal Function (EOF) to find spatial and temporal contrasting differences, then relate them to the physical variables. Our result exhibits seasonal patterns in the Chl-a variations, indicating the well-known South Java upwelling system, which is high during the south-east (SE) monsoon and low during the north-west (NW) monsoon. March and September were the two contrasting months shown by the significant differences of Chl-a, alongshore wind stress, SST, and SSHA between the two. The alongshore wind has a significant correlation with the Chl-a at the shelf area in September since wind-driven upwelling during that time. The alongshore bottom stress significantly correlates with the Chl-a at the 109.5˚E, 8˚S in March (wind-driven downwelling periods), indicating an upwelling-favorable current. However, the vertical cross-shelf temperature and alongshore current do not show a current-driven upwelling nor water masses uplift at this point in March.

 

Keywords: chlorophyll-a, physical variables, Empirical Orthogonal Analysis, South Java upwelling.


Full Text:

PDF


References


ROSS T., CRAIG S. E., COMEAU A., DAVIS R., DEVER M., and BECK M. Blooms and subsurface phytoplankton layers on the Scotian Shelf: Insights from profiling gliders. Journal of Marine Systems, 2017, 172: 118–127. https://doi.org/10.1016/j.jmarsys.2017.03.007

TWEDDLE J. F., GUBBINS M., and SCOTT B. E. Should phytoplankton be a key consideration for marine management? Marine Policy, 2018, 97: 1–9. https://doi.org/10.1016/j.marpol.2018.08.026

ARMENGOL L., CALBET A., FRANCHY G., RODRÍGUEZ-SANTOS A., and HERNÁNDEZ-LEÓN S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Scientific Reports, 2019, 9: 2044. https://doi.org/10.1038/s41598-019-38507-9

SALGADO-HERNANZ P. M., RACAULT M. F., FONT-MUÑOZ J. S., and BASTERRETXEA G. Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing. Remote Sensing of Environment, 2019, 221: 50–64. https://doi.org/10.1016/j.rse.2018.10.036

LIM Y. K., BAEK S. H., LEE M., KIM Y. O., CHOI K. H., and KIM J. H. Phytoplankton composition associated with physical and chemical variables during summer in the southern sea of Korea: Implication of the succession of the two toxic dinoflagellates Cochlodinium (a.k.a. Margalefidinium) polykrikoides and Alexandrium affine. Journal of Experimental Marine Biology and Ecology, 2019, 516: 51–66. https://doi.org/10.1016/j.jembe.2019.05.006

CORREDOR-ACOSTA A., MORALES C. E., BREWIN R. J. W., AUGER P.-A., PIZARRO O., HORMAZABAL S., and ANABALÓN V. Phytoplankton size structure in association with mesoscale Eddies off Central-Southern Chile: The satellite application of a phytoplankton size-class model. Remote Sensing, 2018, 10(6): 834. https://doi.org/10.3390/rs10060834

RUIZ S., CLARET M., PASCUAL A., OLITA A., TROUPIN C., CAPET A., TOVAR-SÁNCHEZ A., ALLEN J., POULAIN P.-M., TINTORÉ J., and MAHADEVAN A. Effects of Oceanic Mesoscale and Submesoscale Frontal Processes on the Vertical Transport of Phytoplankton. Journal of Geophysical Research: Oceans, 2019, 124(8): 5999–6014. https://doi.org/10.1029/2019JC015034

GEBREHIWOT M., KIFLE D., and TRIEST L. Partitioning the influence of hydrodynamics-induced physical variables and nutrients on phytoplankton assemblages in a shallow tropical reservoir (Koka, Ethiopia). Limnology, 2020, 21(3): 269–274. https://doi.org/10.1007/s10201-020-00611-5

GAO C., FU M., SONG H., WANG L., WEI Q., SUN P., LIU L., and ZHANG X. Phytoplankton pigment pattern in the subsurface chlorophyll maximum in the South Java coastal upwelling system, Indonesia. Acta Oceanologica Sinica, 2018, 37(12): 97–106. https://doi.org/10.1007/s13131-018-1342-x

GROOM S. B., SATHYENDRANATH S., BAN Y., BERNARD S., BREWIN R., BROTAS V., BROCKMANN C., CHAUHAN P., CHOI J.-K., CHUPRIN A., CIAVATTA S., CIPOLLINI P., DONLON C., FRANZ B., HE X., HIRATA T., JACKSON T., KAMPEL M., KRASEMANN H., LAVENDER S., PARDO-MARTINEZ S., MÉLIN F., PLATT T., SANTOLERI R., SKAKALA J., SCHAEFFER B., SMITH M., STEINMETZ F., VALENTE A., and WANG M. Satellite ocean colour: Current status and future perspective. Frontiers in Marine Science, 2019, 6: 485. https://doi.org/10.3389/fmars.2019.00485

HOOD R. R., BECKLEY L. E., and WIGGERT J. D. Biogeochemical and ecological impacts of boundary currents in the Indian Ocean. Progress in Oceanography, 2017, 156: 290–325. https://doi.org/10.1016/j.pocean.2017.04.011

LAHLALI H., WIRASATRIYA A., GENSAC E., HELMI M., KUNARSO, and KISMAWARDHANI R. A. Environmental aspects of tuna catches in the Indian Ocean, southern coast of Java, based on satellite measurements. Proceedings of the 4th International Symposium on Geoinformatics, Malang, 2018, pp. 1-6. https://doi.org/10.1109/ISYG.2018.8612020

DEWI A. K., GAOL J. L., SIREGAR V. P., and ATMADIPOERA A. S. Bigeye tuna fishing ground analysis using oceanographic features in Eastern Indian Ocean off Southern Java. IOP Conference Series: Earth and Environmental Science, 2020, 429: 012043. https://doi.org/10.1088/1755-1315/429/1/012043

DUAN Y., LIU H., YU W., LIU L., YANG G., and LIU B. The onset of the Indonesian–Australian summer monsoon triggered by the first-branch eastward-propagating Madden–Julian oscillation. Journal of Climate, 2019, 32(17): 5453–5470. https://doi.org/10.1175/JCLI-D-18-0513.1

RUDIASTUTI A. W., SYAFI’I A. N., and KUSUMA H. A. Spatial pattern of tides in Indonesia using altimetry data. Proceedings of the 6th International Symposium on LAPAN-IPB Satellite, Bogor, 2019. https://doi.org/10.1117/12.2542855

KIM H., VITART F., and WALISER D. E. Prediction of the Madden-Julian oscillation: A review. Journal of Climate, 2018, 31(23): 9425–9443. https://doi.org/10.1175/JCLI-D-18-0210.1

ZHANG C., ADAMES F., KHOUIDER B., WANG B., and YANG D. Four Theories of the Madden-Julian Oscillation. Reviews of Geophysics, 2020, 58(3): e2019RG000685. https://doi.org/10.1029/2019RG000685

MENEZES V. V., & VIANNA M. L. Quasi-biennial Rossby and Kelvin waves in the South Indian Ocean: Tropical and subtropical modes and the Indian Ocean Dipole. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 166: 43–63. https://doi.org/10.1016/j.dsr2.2019.05.002

PUJIANA K., & MCPHADEN M. J. Intraseasonal Kelvin Waves in the Equatorial Indian Ocean and Their Propagation into the Indonesian Seas. Journal of Geophysical Research: Oceans, 2020, 125(5): 1–25. https://doi.org/10.1029/2019JC015839

HAMEED S. N. The Indian Ocean Dipole. Oxford Research Encyclopedias: Climate Science, 2018, 1: 1–35. https://doi.org/10.1093/acrefore/9780190228620.013.619

WIRASATRIYA A., KUNARSO K., MASLUKAH L., SATRIADI A., and ARMANTO R. D. Different responses of chlorophyll-a concentration and Sea Surface Temperature (SST) on southeasterly wind blowing in the Sunda Strait. IOP Conference Series: Earth and Environmental Science, 2018, 139: 012028. https://doi.org/10.1088/1755-1315/139/1/012028

NINGSIH N. S., SAKINA S. L., SUSANTO R. D., and HANIFAH F. Zonal Current Characteristics in the Southeastern Tropical Indian Ocean (SETIO). Ocean Science Discussions, 2020. https://doi.org/10.5194/os-2020-91

PANG X., BASSINOT F., and SEPULCRE S. Indonesian Throughflow variability over the last two glacial-interglacial cycles: Evidence from the eastern Indian Ocean. Quaternary Science Reviews, 2021, 256: 106839. https://doi.org/10.1016/j.quascirev.2021.106839

UTARI P. A., SETIABUDIDAYA D., KHAKIM M. Y. N., and ISKANDAR I. Dynamics of the South Java Coastal Current revealed by RAMA observing network. Terrestrial, Atmospheric and Oceanic Sciences, 2019, 30(2): 235–245. https://doi.org/10.3319/TAO.2018.12.14.01

YANG G., ZHAO X., LI Y., LIU L., WANG F., and YU W. Chlorophyll variability induced by mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Marine Systems, 2018, 199: 103209. https://doi.org/10.1016/j.jmarsys.2019.103209

ISMAIL M. F. A., RIBBE J., ARIFIN T., TAOFIQUROHMAN A., and ANGGORO D. A census of eddies in the tropical eastern boundary of the Indian Ocean. Journal of Geophysical Research: Oceans, 2021, 126(6): e2021JC017204. https://doi.org/10.1029/2021JC017204

WIRASATRIYA A., SETIAWAN J. D., SUGIANTO D. N., ROSYADI I. A., HARYADI H., WINARSO G., SETIAWAN R. Y., and SUSANTO R. D. Ekman dynamics variability along the southern coast of Java revealed by satellite data. International Journal of Remote Sensing, 2020, 41(21): 8475–8496. https://doi.org/10.1080/01431161.2020.1797215

DAI S., ZHAO Y., LI X., WANG Z., ZHU M., LIANG J., LIU H., TIAN Z., and SUN X. The seamount effect on phytoplankton in the tropical western Pacific. Marine Environmental Research, 2020, 162: 105094. https://doi.org/10.1016/j.marenvres.2020.105094

JUNG G., & PRANGE M. The effect of mountain uplift on eastern boundary currents and upwelling systems. Climate of the Past, 2020, 16(1): 161–181. https://doi.org/10.5194/cp-16-161-2020

SILVA M., ARAUJO M., GEBER F., MEDEIROS C., ARAUJO J., NORIEGA C., and DA SILVA A. C. Ocean Dynamics and Topographic Upwelling Around the Aracati Seamount - North Brazilian Chain From in situ Observations and Modeling Results. Frontiers in Marine Science, 2021, 8: 609113. https://doi.org/10.3389/fmars.2021.609113

XIE S., HUANG Z, and WANG X. H. Remotely Sensed Seasonal Shoreward Intrusion of the East Australian Current: Implications for Coastal Ocean Dynamics. Remote Sensing, 2021, 13(5): 854. https://doi.org/10.3390/rs13050854

RUSSO C. S., LAMONT T., TUTT G. C. O., VAN DEN BERG M. A., and BARLOW R. G. Hydrography of a shelf ecosystem inshore of a major Western Boundary Current. Estuarine, Coastal and Shelf Science, 2019, 228: 106363. https://doi.org/10.1016/j.ecss.2019.106363

LIAO F., LIANG X., LI Y., and THURNHERR A. Intense Subsurface Upwelling Associated with Major Western Boundary Currents. Proceedings of the 22nd EGU General Assembly, 2020. https://doi.org/10.5194/egusphere-egu2020-6214

TROWBRIDGE J. H., & LENTZ S. J. The bottom boundary layer. Annual Review of Marine Science, 2018, 10: 397–420. https://doi.org/10.1146/annurev-marine-121916-063351

KUNARSO, HADI S., SARI NINGSIH N., BASKORO M. S., WIRASATRIYA A., and KUSWARDANI A. R. T. D. The classification of upwelling indicators base on sea surface temperature, chlorophyll-a and upwelling index, the case study in Southern Java to Timor Waters. IOP Conference Series: Earth and Environmental Science, 2020, 530: 12020. https://doi.org/10.1088/1755-1315/530/1/012020

WIRASATRIYA A., SUSANTO R. D., KUNARSO K., JALIL A. R., RAMDANI F., and PURYAJATI A. D. Northwest monsoon upwelling within the Indonesian seas. International Journal of Remote Sensing, 2021, 42(14): 5437–5458. https://doi.org/10.1080/01431161.2021.1918790

BRINK K. H. Rectified flow in a stratified coastal ocean. Journal of Marine Research, 2018, 76(1): 1–22. https://doi.org/10.1357/002224018824082016

RIBBE J., TOASPERN L., WOLFF J.-O., and ISMAIL M. F. A. Frontal eddies along a western boundary current. Continental Shelf Research, 2018, 165: 51–59. https://doi.org/10.1016/j.csr.2018.06.007

HORII T., UEKI I., and ANDO K. Coastal upwelling events along the southern coast of Java during the 2008 positive Indian Ocean Dipole. Journal of Oceanography, 2018, 74(5): 499-508. https://doi.org/10.1007/s10872-018-0475-z

NAULITA Y., ARHATIN R. E., and NABIL. Upwelling index along the South Coast of Java from satellite imagery of wind stress and sea surface temperature. IOP Conference Series: Earth and Environmental Science, 2020, 429: 012025. https://doi.org/10.1088/1755-1315/429/1/012025

FADLAN A., SUGIANTO D. N., KUNARSO, and ZAINURI M. Influence of ENSO and IOD to Variability of Sea Surface Height in the North and South of Java Island. IOP Conference Series: Earth and Environmental Science, 2017, 55: 12021. https://doi.org/10.1088/1742-6596/755/1/011001

ZHENG G., & DI GIACOMO P. M. Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton. Remote Sensing of Environment, 2017, 201: 331–341. https://doi.org/10.1016/j.rse.2017.09.008

ISMAIL M. F. A., RIBBE J., and KARSTENSEN J. Remote sensing of upwelling off Australia’s north-east coast. Ocean Science Discussions, 2019. https://doi.org/10.5194/os-2018-14

FERNANDEZ E., & LELLOUCHE J. M. Product User Manual for the Global Ocean Physical Reanalysis Product. GLOBAL_REANALYSIS_PHY_001_030. 2018. https://resources.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-030.pdf

BERMUDEZ. On the Empirical Orthogonal Functions Representation of the Ocean. Doctoral thesis. Universität Hamburg, Hamburg, 2020.

THOMSON R. E., & EMERY W. J. Data Analysis Methods in Physical Oceanography. 3rd ed. Elsevier, Waltham, Massachusetts, 2014. https://www.elsevier.com/books/data-analysis-methods-in-physical-oceanography/thomson/978-0-12-387782-6

CORREDOR-ACOSTA A., PIZARRO-KOCH M., MEDELL J., and SALD G. S. Spatio-Temporal Variability of Chlorophyll-A and Environmental Variables in the Panama Bight. Remote Sensing, 2020, 12(13): 2150. https://doi.org/10.3390/rs12132150

CAVANAUGH J. E., & NEATH A. A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 2019, 11(3): e1460. https://doi.org/10.1002/wics.1460

SATHYENDRANATH S., BREWIN R. J. W., BROCKMANN C., BROTAS V., CALTON B., CHUPRIN A., CIPOLLINI P., COUTO A. B., DINGLE J., DOERFFER R., DONLON C., DOWELL M., FARMAN A., GRANT M., GROOM S., HORSEMAN A., JACKSON T., KRASEMANN H., LAVENDER S., MARTINEZ-VICENTE V., MAZERAN C., MÉLIN F., MOORE T. S., MÜLLER D., REGNER P., ROY S., STEELE C. J., STEINMETZ F., SWINTON J., TABERNER M., THOMPSON A., VALENTE A., ZÜHLKE M., BRANDO V. E., FENG H., FELDMAN G., FRANZ B. A., FROUIN R., GOULD R. W., HOOKER S. B., KAHRU M., KRATZER S., MITCHELL B. G., MULLER-KARGER F. E., SOSIK H. M., VOSS K. J., WERDELL J., and PLATT T. An ocean-colour time series for use in climate studies: The experience of the ocean-colour climate change initiative (OC-CCI). Sensors, 2019, 19(19): 4285. https://doi.org/10.3390/s19194285

RIVAS M. B., & STOFFELEN A. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Science, 2019, 15(3): 831–852. https://doi.org/10.5194/os-15-831-2019

HERSBACH H., BELL B., BERRISFORD P., HIRAHARA S., HORÁNYI A., MUÑOZ-SABATER J., NICOLAS J., PEUBEY C., RADU R., SCHEPERS D., SIMMONS A., SOCI C., ABDALLA S., ABELLAN X., BALSAMO G., BECHTOLD P., BIAVATI G., BIDLOT J., BONAVITA M., DE CHIARA G., DAHLGREN P., DEE D., DIAMANTAKIS M., DRAGANI R., FLEMMING J., FORBES R., FUENTES M., GEER A., HAIMBERGER L., HEALY S., HOGAN R. J., HÓLM E., JANISKOVÁ M., KEELEY S., LALOYAUX P., LOPEZ P., LUPU C., RADNOTI G., DE ROSNAY P., ROZUM I., VAMBORG F., VILLAUME S., and THÉPAUT J.-N. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999–2049. https://doi.org/10.1002/qj.3803

HOFFMANN L., GÜNTHER G., LI D., STEIN O., WU X., GRIESSBACH S., HENG Y., KONOPKA P., MÜLLER R., VOGEL B., and WRIGHT J. S. From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmospheric Chemistry and Physics, 2019, 19(5): 3097–3214. https://doi.org/10.5194/acp-19-3097-2019

TAREK M., BRISSETTE F. P., and ARSENAULT R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrology and Earth System Sciences, 2020, 24(5): 2527–2544. https://doi.org/10.5194/hess-24-2527-2020

BRUNO M. F., MOLFETTA M. G., TOTARO V., and MOSSA M. Performance assessment of ERA5 wave data in a swell dominated region. Journal of Marine Science and Engineering, 2020, 8(3): 214. https://doi.org/10.3390/jmse8030214

DRÉVILLON M., LELLOUCHE J.-M., RÉGNIER C., GARRIC G., BRICAUD C., HERNANDEZ O., and BOURDALLÉ-BADIE R. Quality Information Document for Global Ocean Reanalysis Products. GLOBAL_REANALYSIS_PHY_001_030. 2021. https://resources.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-030.pdf

PURBA N. P., & KHAN A. M. A. Upwelling Session in Indonesia Waters. World News of Natural Sciences, 2019, 25: 72–83. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.psjd-f8f72649-9faa-478a-892e-b0da200dd60c

BAYHAQI A., LENN Y. D., SURINATI D., POLTON J., NUR M., CORVIANAWATIE C., and PURWANDANA A. The variability of indonesian throughflow in Sumba Strait and its linkage to the climate events. American Journal of Applied Sciences, 2019, 16(4): 118-133. https://doi.org/10.3844/ajassp.2019.118.133

ALVES J. M. R., PELIZ A., CALDEIRA R. M. A., and MIRANDA P. M. A. Atmosphere-ocean feedbacks in a coastal upwelling system. Ocean Modelling, 2018, 123: 55–65. https://doi.org/10.1016/j.ocemod.2018.01.004

PEI S., LAWS E. A., ZHU Y., ZHANG H., YE S., YUAN H., and DING X. Nutrient dynamics and their interaction with phytoplankton growth during autumn in Liaodong Bay, China. Continental Shelf Research, 2019, 186: 34–47. https://doi.org/10.1016/j.csr.2019.07.012

PACZKOWSKA J., ROWE O. F., FIGUEROA D., and ANDERSSON A. Drivers of phytoplankton production and community structure in nutrient-poor estuaries receiving terrestrial organic inflow. Marine Environmental Research, 2019, 151: 104778. https://doi.org/10.1016/j.marenvres.2019.104778

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS. ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 2019. https://doi.org/10.5065/BH6N-5N20

COPERNICUS. n.d. https://resources.marine.copernicus.eu/


Refbacks

  • There are currently no refbacks.