Identification of the Spread of the Influenza Virus Type A/H9N2 in Indonesia Using the Neighbor-Joining Algorithm with Felsenstein Models

Siti Amiroch, Mohammad Isa Irawan, Imam Mukhlash, Arif Nur Muhammad Ansori, Chairul A. Nidom

Abstract

The H9N2 virus is an avian influenza disease that does not harm humans but causes respiratory infections and replicates in the tract reproduction in chickens, reducing egg production by 50% to 80%. This case is related to a bioinformatics review from a mathematical perspective, namely, analyzing the H9N2 virus spread using phylogenetic trees with other methods. The phylogenetic tree is a visualization of multiple alignment analysis obtained from the evolution analysis between each sequence pair based on the pairwise alignment method. As a way to identify the spread of the H9N2 virus, the formation of this phylogenetic tree uses pairwise alignment with the Needleman-Wunsch algorithm as the first step in processing the multiple alignments of the H9N2 virus. In this study, phylogenetic trees were constructed using a distance-based method, namely the neighbor-joining algorithm with the Felsenstein model, and simulated in MATLAB®. With this method, we can arrange the phylogenetic tree views with different colors according to the cluster and each branch's spacing shown in more detail. The pairwise alignment results also show mutations from the initial sequence to the entire series in the first cluster.

 

 

Keywords: avian influenza, H9N2, phylogenetics tree, neighbor-joining algorithm, Felsenstein models.

 

 

 


Full Text:

PDF


References


MUFLIHANAH, ANDESFHA E., WIBAWA H., ZENAL, F. C., HENDRAWATI, F., SISWANI, WAHYUNI, KARTINI D., RAHAYUNINGTYAS I., HADI S., MUKARTINI S., POERMADJAJA B., and TJATUR RASA F. S. Kasus pertama low pathogenic avian influenza subtipe H9N2 pada peternakan ayam petelur di Kabupaten Sidrap, Sulawesi Selatan Indonesia. Diagnosa Veteriner, 2017, 16(1): 1-13.

MURAKAMI S., IWASA A., IWATSUKI-HORIMOTO K., ITO M., KISO M., KIDA H., TAKADA A., NIDOM C. A., MAI LE Q., YAMADA S., IMAI H., SAKAI-TAGAWA Y., KAWAOKA Y., and HORIMOTO T. Cross-clade protective immunity of H5N1 influenza vaccines in a mouse model. Vaccine, 2008, 26(50): 6398-6404. https://doi.org/10.1016/j.vaccine.2008.08.053

MONTEERARAT Y., SAKABE S., NGAMURULERT S., SRICHATRAPHIMUK S., JIAMTOM W., CHAICHUEN K., THITITHANYANONT A., PERMPIKUL P., SONGSERM T., PUTHAVATHANA P., NIDOM C. A., MAI LE Q., IWATSUKI-HORIMOTO K., KAWAOKA Y., and AUEWARAKUL P. Induction of TNF-alpha in human macrophages by avian and human influenza viruses. Archives of Virology, 2010, 155(8): 1273-1279. https://doi.org/10.1007/s00705-010-0716-y

SAKABE S., TAKANO R., NAGAMURA-INOUE T., YAMASHITA N., NIDOM C. A., QUYNH LE M. T., IWATSUKI-HORIMOTO K., and KAWAOKA Y. Differences in cytokine production in human macrophages and in virulence in mice are attributable to the acidic polymerase protein of highly pathogenic influenza A virus subtype H5N1. Journal of Infectious Diseases, 2013, 207(2): 262-271. https://doi.org/10.1093/infdis/jis523

DAVIDSON I., SHKODA I., GOLENDER N., PERK S., LAPIN K., KHINICH Y., and PANSHIN A. Genetic characterization of HA gene of low pathogenic H9N2 influenza viruses isolated in Israel during 2006-2012 periods. Virus Genes, 2013, 46(2): 255-263. https://doi.org/10.1007/s11262-012-0852-4

YAMAJI R., YAMADA S., LE M. Q., LI C., CHEN H., QURNIANINGSIH E., NIDOM C. A., ITO M., SAKAI-TAGAWA Y., and KAWAOKA Y. Identification of PB2 mutations responsible for the efficient replication of H5N1 influenza viruses in human lung epithelial cells. Journal of Virology, 2015, 89(7): 3947-3956. https://doi.org/10.1128/JVI.03328-14

SAKAI-TAGAWA Y., YAMAYOSHI S., KAWAKAMI C., LE M. Q., UCHIDA Y., SAITO T., NIDOM C. A., HUMAIRA I., TOOHEY-KURTH K., ARAFA A.-S., LIU M.-T., SHU Y., and KAWAOKA Y. Reactivity and sensitivity of commercially available influenza rapid diagnostic tests in Japan. Scientific Reports, 2017, 7(1): 14483. https://doi.org/10.1038/s41598-017-14536-0

BONFANTE F., MAZZETTO E., ZANARDELLO C., FORTIN A., GOBBO F., MANIERO S., BIGOLARO M., DAVIDSON I., HADDAS R., CATTOLI G., and TERREGINO C. A G1-lineage H9N2 virus with oviduct tropism causes chronic pathological changes in the infundibulum and a long-lasting drop in egg production. Veterinary Research, 2018, 49(1): 83. https://doi.org/10.1186/s13567-018-0575-1

PEACOCK T. H. P., JAMES J., SEALY J. E., and IQBAL M. A global perspective on H9N2 avian influenza virus. Viruses, 2019, 11(7): 620. https://doi.org/10.3390/v11070620

NOVIANTI A. N., RAHARDJO K., PRASETYA R. R., NASTRI A. M., DEWANTARI J. R., RAHARDJO A. P., ESTOEPANGESTIE A. T. S., SHIMIZU Y. K., POETRANTO E. D., SOEGIARTO G., MORI Y., and SHIMIZU K. Whole-genome sequence of an avian influenza A/H9N2 virus isolated from an apparently healthy chicken at a live-poultry market in Indonesia. Microbiology Resource Announcements, 2019, 8(17): e01671-18. https://doi.org/10.1128/MRA.01671-18

JONAS M., SAHESTI A., MURWIJATI T., LESTARININGSIH C. L., IRINE I., AYESDA C. S., PRIHARTINI W., and MAHARDIKA G. N. Identification of avian influenza virus subtype H9N2 in chicken farms in Indonesia. Preventive Veterinary Medicine, 2018, 159: 99-105. https://doi.org/10.1016/j.prevetmed.2018.09.003

LIKIĆ V. A., MCCONVILLE M. J., LITHGOW T., and BACIC A. Systems biology: The next frontier for bioinformatics. Advances in Bioinformatics, 2010, 2010: 268925. https://doi.org/10.1155/2010/268925

TAKAHASHI T., NIDOM C. A., QUYNH LE M. T., SUZUKI T., and KAWAOKA Y. Amino acid determinants are conferring stable sialidase activity at low pH for H5N1 influenza A virus neuraminidase. FEBS Open Bio, 2012, 2(1): 261-266. https://doi.org/10.1016/j.fob.2012.08.007

AMIROCH S., & ROHMATULLAH A. Determining geographical spread pattern of MERS-CoV by distance method using Kimura model. AIP Conference Proceedings, 2017, 1825: 020001. https://doi.org/10.1063/1.4978970

PRADANA M. S., & AMIROCH S. Protein sequence analysis of the Zika virus and the dengue virus using Smith-Waterman algorithm. AIP Conference Proceedings, 2019, 2084: 020011. https://doi.org/10.1063/1.5094275

IRAWAN I., & AMIROCH S. Construction of phylogenetic tree using neighbor-joining algorithms to identify the host and the spreading of SARS epidemic. Journal of Theoretical and Applied Information Technology, 2015, 71(3): 424-429. http://www.jatit.org/volumes/Vol71No3/13Vol71No3.pdf

FELSENSTEIN J. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 1981, 17(6): 368-376. https://doi.org/10.1007/BF01734359

DALBY A. R., & IQBAL M. A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin. PeerJ, 2014, 2: e655. https://doi.org/10.7717/peerj.655

BANKS J., SPEIDEL E. C., HARRIS P. A., and ALEXANDER D. J. Phylogenetic analysis of influenza A viruses of H9 haemagglutinin subtype. Avian Pathology, 2000, 29(4): 353-359. https://doi.org/10.1080/03079450050118485

MONDAL S., KUMAR V., and SINGH S. P. Phylogenetic distribution and structural analyses of cyanobacterial glutaredoxins (Grxs). Computational Biology and Chemistry, 2020, 84: 107141. https://doi.org/10.1016/j.compbiolchem.2019.107141

NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION, n.d. https://www.ncbi.nlm.gov/


Refbacks

  • There are currently no refbacks.