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Abstract: The aim of this research article is to develop a three-step optimal iterative technique using
Hermite interpolation for the solution of nonlinear algebraic and transcendental equation arises in chemical
engineering models. In this connection, we proposed an optimal three-step eight-order technique without derivative
and, has a high efficiency index. The convergence analysis of the proposed method is also discussed. For this
demonstration, we apply the new technique to certain nonlinear problems in chemical engineering, such as, the
conversion in a chemical reactor, a chemical equilibrium problem, azeotropic point of a binary solution and
Continuous Stirred Tank Reactor (CSTR). And the study of dynamics is also used to demonstrate the performance
of the presented scheme. It’s observed from the Comparison tables and dynamics, the proposed technique is more
efficient compared to other existing methods.

Keywords: nonlinear equations, root-finding iterative methods, chemical engineering models, optimal order
of convergence, basin of attraction.
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1. Introduction nonlinear, is of high concern in both applied and real-
Determining the solution of 0, when is  life models. In this article, the proposed method will be
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tested by models in chemical engineering, i.e., Step 1. vn=un—<[i(”;)],where ¢n=<(un+z3(un))]
conversion in a chemical reactor, a chemical

equilibrium problem, azeotropic point of a binary
solution and Continuous Stirred Tank Reactor (CSTR).

In this regard, the Newton Raphson technique for
solving such equations already exists

¢ (un)
Uny1 = Up — (r(l;n) (1)

Equation 1 is one of the most well-known and
renowned iterative approaches for finding solutions to
nonlinear equation is the Newton Raphson method [1].
However, Newton’s method has a quadratic
convergence and requires two function evaluations,
i.e., ((u) & ¢'(w), if I'(u) = 0; then, the said method
fails to converge. The methods involve derivative
required more computing cost compared to methods
with derivative requirements. Nowadays scholars more
intend to derivative free methods.

Steffensen developed a derivative-free iterative

method [2]-[4].
Yn =ty +{(un ), Upn+1 = Un — % (2

C(un)—C(hn)
where [, p] = ===

convergence order and efficiency index as Newton’s
method. For an optimal convergence order 2°~1 [2],
where p functional evaluations per iteration.

A three-step technique of eighth order of
convergence with four-function evaluation was

, it maintains the same

proposed in [5]. It is denoted by “SM”, i.e.,
()
Step 1. v = i — 71, where Y = {(tn +{ (n))
(( n)
Step 2. &n = v = V«Vn) {wn)
<5["“"”"] (1_z(un)‘«wn))>
(D a
Step 3. pp41 = (fn - KOS > , where
Slenonl (1-Z000-2000) (3)
/ S
{(un)
| 1 + 1 +([ﬂnrwn] + |
a= ow\? | G
k(l + Clhtns WaD)@ + STty ) (522)” + 588
ZEDN? | $Gn) |, TG
+ (z(vn)) ) W)

The Chebyshev-Halley type derivative free method
for numerical solution of nonlinear equations of eighth
order was presented in [6]. It required four-function
evaluation and solved some real-life problems in

different fields denoted by “AKKB”.
Step 1. v = fp — it where W, = {(in + ¢ (k)

_ _ () . {7 1
Step 2. n = C0n) = [0 acton)  Chombn] <1+%>

(4)

B G
ClEnvnl+(En—vn){Envninl+
(En=vn) En—tn)Envntintbn]

An eighth-order derivative free iterative method for
the solution of nonlinear equations based on
Steffensen-King’s type methods was presented in [7]. It
required four-function evaluation per iteration, denoted
by “KBK”.

Step 3. ppyq = (fn

) ] |
2¢ [vnunl =S¢ [uniPn] ’

s {n) ()3 % ()
Step 3. fnsr = & z[vn,m+<sn—vn)z[wn.vn.sn]{1 («un))

_ («Ln)f _ gl _ G | & («sn))z} J

$(un) 32 (un) (1) $wn)

An optimal eighth-order derivative free method was
proposed in [8] based on the Steffensen-type method
and they also study the dynamic behavior of the
proposed method for demonstration; it is denoted by
JLM.

(n)
Step 1. vp = piy — i) , where ¥, = {(#n + {3(ﬂn)) ]

¢lhn.pnl
_ _ ()
Step 2. fn = Vn [([Vnrlpn]_(vn_ wn){[vnrlpnrﬂn]] ’ } (6)

_ 2
Step 3. Un+1 = $n ~ g ol r oo T Enm ol |

(=) (En—on)< en o Prtin] )

Many scholars proposed iterative methods for
various orders of convergence and efficiency indexes,
and test these iterative methods in application problems
of various fields, i.e., medical science: blood rheology,
non-Newtonian mechanics, fluid dynamics, population
dynamics, and neurophysiology, chemical engineering:
conversion in a chemical reactor, a chemical
equilibrium problem, azeotropic point of a binary
solution and Continuous Stirred Tank Reactor (CSTR),
physics, civil engineering, etc. [9]-[27].

Step 2. &, = vn—[

2. Proposed Method

Recently, a non-optimal eighth-order method with
five-function evaluation (three functions and two first
derivative) was proposed in [28], i.e.,

(un)
Step 1. v, = up, — g,(‘;n)
2
Step 2. fn =, — ¢(vn) % (un) (7)

((Vn) ({2 (1) =20 (V) (up) +? (Vn))

)
Step 3. ppt1 =& — gén)

In Equation 7, we have two derivatives
¢'(uy) and C'(&,). In connection of the derivative free
method, we must replace these with derivatives
{'(uy) = {[uy, P, taken from equations (5) and (6).

We approximate ¢ '(&,) using available data. Since
we have four values J(w), C'(W),I(v), (&)
approximate ¢ by its Hermite’s interpolating
polynomial H;of degree 3 at the nodes u,v, & and use
the approximation ¢'(§) = H;(€) in the third step of
the iterative scheme (7)

Hermite’s interpolating polynomial of third degree
has the form

Hz(p) =¢o+61(p— ) +¢2(p —)* +

¢3(p — p)? (8)
and its derivative is
H3(p) = ¢4 + 26,(p — 1) + 3¢3(p — w)? 9)

The unknown coefficients will be determined using
available data from the conditions: H;(w) = {(u),
() =), (§) = {(§) and H3 () = {'(W).

Putting p = p into equation (8) and equation (9), we
get ¢o = {(u) and ¢; = ¢'(u). The coefficients ¢, and
¢3 are obtained from the system of two linear equations
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formed using the remaining two conditions p =
v and p = & in equation (8), and we obtain

_ E-mllvie]  v-p)llEm] 11
27 - E-vE-p 4C )( v- u) (10)
and
_GlEm v (W
BT EVE-D  Evo-w T - (1)

By putting the values of¢;,¢,,¢3 & p =& (9), we
get

Hs(2) =
2651, 8) = §TuvD) + €[, €1 + =5 (T v] =
{O) (12)

We replace ¢'(&,) and {'(u,) in equation (7), finally
we obtain

¢(n)
28 pnénl=Clunval) +

S+ 2B v~ i) )
According to [2] Equation (13) is an optimal,
eighth-order derivative free method.

Step 3. Un+1 =&n —

()
Step 1. vn=,un—m )
S ()
SEP 2 6 = Vi = g ] 220 (i 722) L (13)
i

3. Convergence Analysis

Theorem: Let « € D be a simple zero of a
sufficiently differentiable function{: D € R = Rin
an open interval D, which containsx, as an initial
approximation of @. Then, the method (13) is of the
eighth order and includes only four function
evaluations per full iteration, and no derivatives used.

Proof: The Taylor’s series expansion of the function
{(uy,) can be written as:

L) = Smo D (4, — @)™ = (@) + (@)t —
@y + 59y — @ + 2 (y — @)+ (14)
For 5|mpIiC|ty, we assume that
_ (1) (@)
Ak _( )z( )’ k=
Thus, we have

() = ¢ (@)e, + Azen? + Asep + Agey + -1 (15)
Furthermore, we have

(WPn)—=¢(un)
Sl tn) = S0 = () (14 24,0, + 34367 +

ed (A20° (@) +44,) + 3ei¢” (@) (A3 + 4;) +

36507 (@) (43 + 44245 + 24,) + -+ 0(eD)) (16)
{un)

{[Yn, pnl

2e3(43 — Ag) + et (443 — TA,45 + 4,0 () +

2, and assume thate,, = u, — a.

Step 1: v, = u, — = Aye? —
34,) + €5 (—8A‘5 + 20A%A; — 10A,A, — 6A% +

3850% (@) + -+ 0(e) (17)
and

() = {'(@) [Azel — 2} (43 — 43) +
et (443 = 74,45 + 4,0 (@) +34,) + e (—8a% +

20A3A; — 10A,A, — 6A2 + 3050 (a)) + -+ +

0(e)| (18)
From equations (16) and (18)
)
T = Aei ZQS(EA% —A)
et (1383 — 14A8; + A5 () +3A4) +
( 38A% + 64A%A; — 3A%0 (@) — 20A,A, —

12A% + 3A57 (a)) + -+ 0(e)) (19)
02 (1tn) = 20 (v ) (btn) + G2 (v) = €3¢ (@) (1 +

202(243 — Ay) — 2€3 (5A3 — TAyA; + Ay¢ " (a) +
24,) + ) (20)
and
2
£ tn) =1+ 2Ae, +

32 (un)—28(vp) (un)+¢2(vy) 5
e2 (4As — 3A3) + 2¢3 (A3 — 4A,A5 + A () +
3A,) + 2e (2A4 + AZA, + 2A30° (@) — 5A,A, —
2A% 4+ 3A57 (a)) + 2e; (—9A§ + 19A3A; —

A37° (@) — 5A,A% + 9A,A50" (@) — 4A3A, +

6A0° (@) + -+ 0(eD) 21)
From equations (19) and (21), we have
J(vn) 52(#n) _ 2 _
C[WYn.tinl ((z(ﬂn) Zz(Vn)((#n)"'zz(Vn)) - AZ €n

2e3(A2 — A3) + e (2A3 6A,A; + A 0" () +

3A,) + €S (2A4 + 6A2A,; + AZC° (@) — 8A,A, —

4A% + 3A50 (a)) + -+ 0(e)) (22)
and
Step 2:
_ _ {(vn) iz(ﬂn) _ 3
En = Vn $[WYn.un] ({Z(ﬂn)_zf(vn)((un)"'(z(Vn)) = én (ZA

AxA5) + e (—104% + 144345 — 430" (a) — 24,4, — 243) +
en(31A5 — 724345 + 443" (@) + 21434, + 304,43 —
64,450" (@) — TA3A4) + -+ 0(e) (23)
$(n) = (@) (243 — Az45) + eF (—104% +
14434, — 430° (@) — 24,4, — 243) + -+ 0(e)|  (24)

Hnst = §n = 523, where {'(§n) ~ H3(6)

Hs (6n) = 2 lptn, En] = Clam va) ¢S] +

v, Gl vnl = Clbn, tn]) (25)
H'3(&n) = C'(a) [1 + Ageft (443 — 24,45 +

430" (@) + Ay) + e (—2045 + 28434, — 6434, —

4A243 + 5424507 (0) + 2454,) + -+ 0(eR)]|  (26)

Chn). = (243 — Azdy) + e (—104% + 14434, —

Hy(&n)
A% (@) — 24,4, — 24%) + -+ + 0(ed) 27)

Finally, we obtain
. D)
Step 3t pnan = &n — gty = ABef(245 — A3)(243

AAz + Ay) + 0ley] (28)
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4. Numerical Experiment

The following problems are taken from the

literature and tested by the proposed method.

Example 1 (conversion in a chemical reactor): See

in [14], [29], [30], the following nonlinear equation is
to be solved:

G(w) =15, — Slog
As an initial solution, we selected u, = 0.76.

M) + 4.45977

0.4—0.54

(29)

Table 1 Numerical results for Example 1 for the first four iterations and their absolute function values at u, = 0.76 (Developed by the

authors)

1% Iteration

2" Jteration

3 Iteration

4™ Iteration

Methods Iteration
Proposed 8™ 4
1Sl
SM 8" L
1Sl
AKKB8"
1<)l
KBK 8 u
1<)l
Jmg® u
1Sl

7.57396 x 1071
4.29446 x 107°
7.57394 x 1071
1.41787 x 10™*
7.59742 x 1071
1.94304 x 1071
7.57399 x 1071
1.93828 x 10™*
7.57396 x 1071
418512 x 1077

7.57396 x 1071
2.86660 x 10772
7.57396 x 1071
3.23556 x 10728
7.59013 x 1071
1.32320 x 1071
7.57396 x 1071
1.15904 x 10733
7.57396 x 1071
1.51627 X 10~*2

7.57396 x 1071
1.12989 x 107577
7.57396 x 1071
2.36985 x 107217
7.57917 x 1071
419134 x 1072
7.57396 x 1071
439345 x 107267
7.57396 x 1071
3.42909 x 107255

7.57396 x 1071
6.58236 x 10~%621
7.57396 x 1071
1.96285 x 1071730
7.57398 x 1071
1.42725 x 10~*
7.57396 x 1071
1.87274 x 1072134
7.57396 x 1071
458775 x 1071531

Table 2 Numerical results for Example 1, error fixed at § =
1073990 (Developed by the authors)

Methods IG N FE CPUTime
Proposed 8" 0.76 4 16 1.921
SR 076 5 20 3.266
AKKB 8™ 076 8 32 5.469
KBK 8" 076 5 20 3.625

JLM 8t

076 5 20

3.297

Example 2 (a chemical equilibrium problem) [13],
[24], [26]:

G(u) = p* —7.79075u3 + 14.7445u% +

2.511u —1.674

(30)

Table 3 Numerical results for Example 2 for the first four iterations and their absolute function values at uy, = 0.35 (Developed by the

authors)

Methods

Iteration

1% Iteration

2" Jteration

3" Iteration

4™ Iteration

Proposed 8"

SM gt
AKKB 8"
KBK 8"

JLM 8t

u
1<)l

u
1<)l
u
1<)l
u
1<)l
u
1<)l

2.77883 x 1071
1.09725 x 10~*
2.77874 x 1071
2.50859 x 1075
2.77873 x 1071
1.87514 x 1075
2.78568 x 1071
6.26823 x 1073
2.77876 x 1071
4.65450 x 1075

2.77871 x 1071
2.88117 x 10738
2.77871 x 1071
1.11091 x 10738
2.77871 x 1071
7.58534 x 10739
2.77871 x 1071
3.93074 x 10722
2.77871 x 1071
2.04096 x 10731

2.77871 x 1071
6.57149 x 107307
2.77871 x 1071
1.64358 x 107305
2.77871 x 1071
5.44010 x 107396
2.77871 x 1071
1.33588 x 107175
2.77871 x 1071
1.45092 x 10718°

2.77871 x 1071
4.81304 x 1072456
2.00212 x 1071
3.77303 x 1072440
2.77871 x 1071
3.80769 x 1072443
2.77871 x 1071
2.37747 x 1071403
2.77871 x 1071
1.87277 x 1071138

Table 4 Numerical results for Example 2, error fixed at § =

1073990 (Developed by the authors)

Methods IG N FE CPUTime
Proposed 8" 035 5 20 1.156
Sm gt 035 5 20 1453
AKKBS8" 035 5 20 1.266
KBK 8" 035 5 20 2313
JLM 8" 035 5 20 1.406

Example 3 (azeotropic point of a binary solution)

[14], [29], [31]:
{3(w) =

AB[B(1-p)?-Ap?]
[u(A-B)+B]?
where A and B are coefficients

(31)
in the Van Laar

equation, which describes phase equilibria of liquid
solutions. Consider for this problem that A = 0.38969
and B = 0.55954. The root of this equation is u =
0.7573962463. As an initial solution, we selected

o = 0.

Table 5 Numerical results for Example 3 for the first four iterations and their absolute function values at yy = 0 (Developed by the authors)

Methods

Iteration

1% Iteration

2" Jteration

3 Iteration

4™ Iteration

Proposed 8"

SM gt
AKKB 8"
KBK 8"

JLM gt

u
(@]

u
1wl
u
1wl
u
(@]
u
[

5.45213 x 1071
1.08136 x 10™*
5.43841 % 1071
2.10212 x 1074
5.42440 x 1071
445921 x 107
6.59987 x 1071
1.54022 x 1072
476022 x 1071
1.32815 x 1072

5.45098 x 1071

8.93287 x 10734
5.45098 x 1071

9.23458 x 10723
5.45098 x 1071

7.07655 x 10722
5.45105 x 107*
1.17287 x 107°
5.45096 x 1071
2.16254 X 1077

5.45098 x 1071
1.93788 x 107266
5.45098 x 1071
1.32240 x 10716°
5.45098 x 10*
2.44038 x 10164
5.45098 x 1071
7.50379 x 10™*1
5.45098 x 1071
1.03349 x 10735

5.45098 x 1071
9.50623 x 1072128
5.45098 x 1071
2.33842 x 1071344
5.45098 x 1071
4.88144 x 1071304
5.45098 x 1071
2.10601 x 107314
5.45098 x 1071
1.23129 x 107205
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Table 6 Numerical results for Example 3, error fixed at § =

1073900 (Developed by the authors)

Methods IG N FE CPUTime
Proposed8™ 0 5 20 0.781
SM gt 0 5 20 1422
AKKB 8" 0 5 20 1359
KBK 8" 0 6 24 1282

JLM 8t 0

6 24 1531

Example 4 (Continuous Stirred Tank Reactor
(CSTR)) [32]:
fo(w) = u* + 11.50u3 + 47.49u% + 83.06325u +
51.23266875

(32)

Table 7 Numerical results for Example 4 for the first four iterations and their absolute function values at u, = —1.5 (Developed by the

authors)

Methods

Iteration

1% Iteration

2" Iteration

3 Iteration

4™ Iteration

Proposed 8™
SMm g™
AKKB 8"
KBK 8"

JLMm 8t

U
1<)l
U
1<)l
u
1<)l
u
1<)l
u
1<)l

—1.45000 x 10°
1.14452 x 1076
—1.44940 x 10°
1.42665 x 10°

—1.37745 x 10°
467667 x 1071
—1.45000 x 10°
448721 x 1076
—1.45000 x 10°
2.02305 x 10~°

—1.45000 x 10°
2.43969 x 10751
—1.45000 x 10°
1.87984 x 10*

—1.09738 x 10°
3.52296 x 10°

—1.45000 x 10°
1.86571 x 10745
—1.45000 x 10°
7.80637 x 10738

—1.45000 x 10°
1.03997 x 107408
—1.45000 x 10°
2.45249 x 103
—1.33464 x 10°
7.98753 x 1071
—1.45000 x 10°
1.66662 x 107360
—1.45000 x 10°
2.57694 x 107226

—1.45000 x 10°
1.13376 x 1073267
—1.45000 x 10°
3.04714 x 102
—1.42788 x 10°
1.30706 x 1071
—1.45000 x 10°
6.75742 x 1072881
—1.45000 x 10°
3.33451 x 1071357

Table 8 Numerical results for Example 4, error fixed at § =
1073990 (Developed by the authors)

Methods IG N FE CPUTime
Proposed 8" —15 4 16 0.907
SYER -15 5 20 2203
AKKB 8" -15 9 36 2813
KBK 8" —-15 5 20 2.062
JLM 8t —15 5 20 2547

5. Dynamics Study of the Methods

For investigating the stability of the proposed
method at various initial guess we use the dynamical
system, i.e., basin of attraction. If an algorithm fails to
converge or converges to a different solution, it is
considered inferior to the others. The main difficulty
with this form of comparison is that the starting point is
just one among an infinite number of possibilities. To
combat this, the concept of a basin of attraction was
developed. If a function contains n different zeroes
(roots), the plane is split into n basins in an ideal case,
and every basin has a different color. The basin of
attraction method was initially discussed in [33].
Newton’s approach was contrasted to Halley’s,
Popovski’s, and Laguerre’s third-order methods. This is
preferable to comparing method by executing various
non-linear functions with a certain initial value. Many
articles have been published in the recent decade that
use the concept of basin of attraction to compare the
efficacy of various techniques.

6. Basin of Attraction for Proposed

Algorithms
All basins are plotted with MATLAB R2018b

within the range R =[-1x1]x[-1x 1] with a
density of 300 x 300 = 90,000 points. To terminate
iterations, an error threshold of 1x 107 or a
maximum count of 100 iterations is chosen. Each point
in R is then picked as the starting condition for the
algorithms. If the sequence generated by the iterative
algorithm converges to a root x;, to the function P;(x)
with the specified tolerance and iterations count N <
100, we decide to give the starting point a distinct
color (not black) depending on the root it converged to.
If the iterative algorithm starting with x € R transcends
100 iteration count before converging to any root x; or
converges to some other value, say p, with specified
tolerance |p — x*| < 1 x 1071°, we conclude that the
starting point has diverged and a black is assigned to it.

The number of iterations is depicted for each point
in another basin with a reference of a color bar

alongside.
S.No.  Functions (P(x)) Roots (x; : k=1,2,3,..)
L P ) =27 L 1 1
=Xy =377
2. 1 1 1 11 1
P — 3 _ 1,24, el
() =x Zx +4x 8 Xk 2,21, 21
3. - 1 1.1
= —x—— =2, ——4=
P;(x) x+16x 2 Xe =g, —gE5l
4. 4 1 _1i1i -1+1i
Py(x) = x +64 Xe=—p 2
5. 1,1 1 1+l 141 1
Ps(x) =x —gix +64x_128L Y= T 5l
6. P(x) =x*—-1 X =1-1

6.1. Basin of Attraction of the Proposed Eighth-
Order Methods

The left figure shows roots while right figure shows
the number of iterations at each initial point of P, (x)
obtained by the proposed eighth-order method.
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Fig. 1 Basin of attraction of P; (x) (Developed by
authors)
Fig. 2 Basin of attraction of P,(x) (Developed by
authors)
Fig. 3 Basin of attraction of P;(x) (Developed by
authors)
Fig. 4 Basin of attraction of P,(x) (Developed by
authors)
Fig. 5 Basin of attraction of P5(x) (Developed by
authors)
Fig. 6 Basin of attraction of P4(x) (Developed by
authors)
Table 9 Comparison table (Developed by the authors)
Method Kong-ied [28] Proposed
Method Method
Rate of convergence gm gm
Total function evaluations 5 4
per iteration
Efficiency Index 1.515716567 1.681792831
Optimality Non-optimal Optimal

7. Conclusion
In this article, the main attention was focused upon
to derive an optimal derivative free method of eight

order with a three-step formula for finding the roots of
non-linear equations in chemical engineering. Various
application problems have been tested by the proposed
method and compared with other available counterpart
methods in the literature of the same order. For the
analysis of the stability and consistency of the proposed
method, the basin of attraction for various problems
has been found to be suitable using the proposed
method. It was observed from the comparison tables
and basin of attraction in previous pages that the
proposed eighth -order method is accurate, consistent,
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and their stability is robust compared to their
counterpart methods available in the literature in all
application problems. Therefore, the proposed method
is one of the better alternate methods for the solution of
nonlinear algebraic and transcendental equations. The
implementation of the proposed method is all nonlinear
algebraic and transcendental equations arise in various
fields. In the future, we will propose a 16™-order
optimal derivative free method. Matlab, Mathematica
2021, and Maple 2021 software were used to obtain the
results of various application problems and basin of
attraction.
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