The Spatio-Temporal Variability of Chlorophyll-A and Its Physical Variables in the South Java Sea Shelf

Asep Sandra Budiman1,2*, Dietriech Geoffrey Bengen2, I. Wayan Nurjaya2, Zainal Arifin1, Muhammad Furqon Azis Ismail1

1 Research Center for Oceanography, LIPI, Jakarta, Indonesia
2 Faculty of Fisheries and Marine Sciences, IPB, Bogor, Indonesia

Abstract: The Chlorophyll-a (Chl-a) dynamics in the upwelling system associate with physical variables that accompany it, whether it is a driver or a response to the upwelling process. As an upwelling driver, wind and current could enhance the Chl-a concentration through a process known as wind-driven and current-driven upwelling, respectively. On the other hand, Sea Surface Temperature (SST) and Sea Surface Height Anomaly (SSHA) come as the upwelling response. We examine these four physical variables against the Chl-a dynamics in the South Java Sea shelf using satellite-derived and ocean reanalysis data from 2002 to 2017. Chl-a variability was examined using Empirical Orthogonal Function (EOF) to find spatial and temporal contrasting differences, then relate them to the physical variables. Our result exhibits seasonal patterns in the Chl-a variations, indicating the well-known South Java upwelling system, which is high during the south-east (SE) monsoon and low during the north-west (NW) monsoon. March and September were the two contrasting months shown by the significant differences of Chl-a, alongshore wind stress, SST, and SSHA between the two. The alongshore wind has a significant correlation with the Chl-a at the shelf area in September since wind-driven upwelling during that time. The alongshore bottom stress significantly correlates with the Chl-a at the 109.5°E, 8°S in March (wind-driven downwelling periods), indicating an upwelling-favorable current. However, the vertical cross-shelf temperature and alongshore current do not show a current-driven upwelling nor water masses uplift at this point in March.

Keywords: chlorophyll-a, physical variables, Empirical Orthogonal Analysis, South Java upwelling.

南爪哇海陆架叶绿素一种的时空变异性及其物理变量

摘要：上升流系统中的叶绿素-一种(叶绿素)动力学与伴随它的物理变量相关联，无论是驱动力还是对上升流过程的响应。作为上升流的驱动力，风和洋流可以分别通过称为风驱动和电流驱动的上升流的过程来提高叶绿素的浓度。另一方面，海面温度（不锈钢）和海面高度异常（SSHA）作为上升流响应。我们使用2002年至2017年的卫星衍生数据和海洋再分析数据，针对南爪哇海陆架的叶绿素动力学研究了这四个物理变量。使用经验正交函数（EOF）检查了叶绿素变异性，以找到空间和时间对比差异，然后将它们与物理变量联系起来。我们的结果展示了叶绿素变化的季节性模式，表明著名的南爪哇上升流系统在东南（东南）季风期间高，在西北（西北）季风期间低。3月和9月是两个截然不同的月份，两者之间的叶绿素、沿岸风应力、不锈钢和SSHA存在显着差异。9月陆架区沿风与叶绿素具有显着相关性，因为当时风驱动上升流。沿岸底部压力与3月109.5°E、8°S的叶绿素显着相关（风驱动下流期），表明有利于上升流。然而，垂直跨大陆架温度和沿岸水流在3月的这段时间点没有显示出电流驱动的上升流或水团上升。

关键词：叶绿素-一种，物理变量，经验正交分析，南爪哇上升流。
1. Introduction

As the major primary productivity producer in the ocean, phytoplankton is the base of marine food [1–3]. Chlorophyll-a (Chl-a) concentration has become widely used as the proxy of phytoplankton biomass [4]. The previous study has shown that Chl-a concentrations and the taxonomic composition of phytoplankton communities are qualitatively correlated with the physical variables [5], oceanic circulation, and mesoscale physical processes [6–8]. The Chl-a in the coastal upwelling system area has high variability as the upwelling, high during the upwelling period and mostly low during the non-upwelling or the downwelling period. The selective absorption of certain wavelengths (blue and blue-green) by Chl-a as a photosynthetic pigment allows the quantification of phytoplankton biomass through satellite-derived measurements of ocean color [9], [10].

Southern Java coast is well known as the upwelling system in the South East Tropical Indian Ocean (SETIO). Lies in the majority region of the ocean’s productivity [11], the southern Java coast becomes the site of important fisheries in Indonesian waters [12], [13]. The oceanic and atmospheric process in this region may influence Chl-a concentrations, such as the monsoon system [14], tides [15], the Madden-Julian Oscillation (MJO) [14], [16], [17], Kelvin and Rossby waves [18], [19], the Indian Ocean Dipole (IOD) [20], the El-Niño Southern Oscillation (ENSO) [21], [41], the Indonesian Throughflow (ITF) [22], [23], the South Java Current (SJC) [22], [24], the South Equatorial Current (SEC) [22], and eddies [25], [26].

The southern Java upwelling responds to the monsoonal winds, which is associated with the seasonal southeasterly wind and well known as the wind-driven upwelling. In turn, southern Java waters rich in nutrients and Chl-a during the upwelling event. The study of [27] reveals a westward shift of upwelling signal along the southern Java coast, consistent with the alongshore wind shift.

Previous studies have shown that upwelling can be intensified or even be generated through both wind-driven and current-driven processes. In the case of current-driven processes, upwelling can be generated through 1) the interaction of boundary currents over variable topography [28–30], 2) encroachment of the boundary current flow to the coast [31], and 3) cyclonic eddies [25]. Current-driven upwelling is important since it has the same role as wind-driven upwelling in nutrient supply and biological productivity by increasing the Chl-a concentrations. According to the Java upwelling that occurs among the southern Sunda shelf area with several ocean circulations, i.e., the semi-annually reversing boundary current SJC and mesoscale eddies, the existences of current-driven upwelling or current-driven uplift would be possible along the southern coast of Java.

It is well documented that the isotherms are generally uplifted on the continental shelf adjacent to western boundary currents (WBCs) [32], [33] and have been shown to occur on the shelf adjacent to the East Australian Current (EAC) [31]. The evidence of the same process in the South Java shelf has not yet been found and would be a new finding. As the wind-driven upwelling system generates an Ekman layer at the surface, the current-driven upwelling generates a layer at the bottom depth, namely Bottom Boundary Layer (BBL) [34]. Onshore flow in the BBL can result as a response to interior flow along the continental shelf (poleward along an eastern coast in the Southern Hemisphere) or, in our case, westward flow along a southern Java coast. This onshore flow carries dense water up the slope like Ekman transport at the surface, resulting in upwelling.

We hypothesize that there is an uplift or upwelling process in the shelf area of South Java since it has met the requirements for the process to occur, i.e., the existence of oceanic circulations in the shelf and its adjacent areas such as boundary currents (South Java current) and eddies which could infringe the shelf break at a certain time and lift the water masses originating from the depth to the surface.

The previous study of South Java upwelling has focused more on studies during the south-east monsoon [21], [27], [35], while the conditions during the north-west monsoon are not widely known. [36] examine the condition of Indonesian waters during the NW monsoon but not focused on the South Java upwelling system. Here, for the first time, we reveal the physical condition of the South Java upwelling system during the north-west monsoon. The analysis is focused more closely on the shelf and the adjacent area because it has not been discussed before. We hypothesize that there is current-driven upwelling on the shelf.

Although South Java upwelling has been the focus of many researchers, studies of upwelling as part of the shelf circulation have not yet been conducted. For the first time, the Java upwelling (based on Chl-a concentration analysis) will be investigated closely in the shelf area by involving the various physical variables that accompanied the upwelling process. The alongshore bottom stress (hereafter referred to as bottom stress) as the agent to current upwelling or water masses uplift will be included and separately discussed. The bottom stress is expected to be directed mainly alongshore since alongshore flows generally predominate in the coastal ocean [37]. It has been
found that the bottom stress can be caused by the interaction between near-bottom currents by the boundary current, current encroachment, eddy activity, and rugged bathymetry [38]. The possibility of current-driven upwelling or water masses uplift due to upwelling-favorable bottom stress in the southern Java Sea shelf will be investigated for the first time. Enhanced Chl-a in this region is well known as a response to wind-driven upwelling. Still, the possibilities for other forces or processes (i.e., current-driven upwelling) that leading this phenomenon have never been studied and known well. In this study, we present the quantification of the contributions of the physical variables to Chl-a variability on the southern coast of Java. We aimed to: (1) describe the spatial and temporal distribution of Chl-a with a focus on the shelf region; (2) quantify the contribution made by four physical variables that accompanied the upwelling process as the main process influenced Chl-a variability in the South Java.

2. Materials and Method

2.1. General Features of the Study Area

The study site spanned longitudinally from 108°E to 114°E (Fig. 1), including the recently investigated upwelling region [9], [27], [39], [40]. The continental shelf (hereafter called shelf) presents different dimensions along the South Java coast. The Cilacap coast shows the widest shelf (~125 km from the coast), followed by the Kretek coast (~75 km) and Prigicoast (~50 km). The eastern region has the narrowest shelf (~10 km) (Fig. 1).

The circulation is influenced by the oceanic and atmospheric dynamics, which are seasonally reversing monsoonal wind [14], the intra-seasonally Kelvin waves during the transitional monsoon [18], [19], the Indian Ocean Dipole (IOD) [20], and ENSO [21], [41].

2.2. Surface Satellite Chlorophyll-a

Satellite remotely-sensed Chl-a (mg m\(^{-3}\)) data obtained from daily globally L4 ocean color reprocessed from [62]. The Chl-a data have a spatial resolution of about 4 km covering the period of 2002–2017. These Chl-a products (Daily, Monthly, and Climatology) are based on merging the sensors SeaWiFS, MODIS, MERIS, VIIRS-SNPP&JPSS1, OLCI-S3A&S3B. The application of remotely sensed Chl-a data is limited in shallow coastal shelf water due to a range of factors, including bottom albedo, suspended sediment, and coastal turbidity [42], [43] restricting the interpretation and analysis to water deeper than 40 m. Here, the limitation of remotely sensed Chl-a concentrations was considered by taking the pixel of the Chl-a deeper than 40 m isobaths for further analysis.

2.3. Physical Variables

Physical variables promoted Chl-a variations in our domain considered both driver and response of South Java upwelling system. The driver was wind stress and bottom stress, while the response was Sea Surface Temperature (SST) and Sea Surface Height Anomaly (SSHA). A 10-m daily winds data used an ERA5, the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate for 2002–2017. The product has a 25 km spatial resolution and can be downloaded from [61]. Sea Surface Temperature (SST), Sea Surface Height (SSH), and bottom currents obtained from [61]. Sea Surface Temperature (SST), Sea Surface Height (SSH), and bottom currents obtained from GLOBAL_REANALYSIS_PHY_001_030 [44], distributed through the Copernicus Marine Environment Monitoring Service (CMEMS), a global ocean eddy-resolving (1/12° horizontal resolution, approximately 8 km, and 50 vertical levels) reanalysis covering the altimetry era 1993-2018. It is based largely on the current real-time global forecasting CMEMS system. This product can be downloaded from [62]. The alongshore wind stress (hereafter referred to as wind stress) calculated by the following formulation

\[
\tau_{wx} = \rho_g C_w u_w \sqrt{u_w^2 + v_w^2}
\]

\(u_w\) (m s\(^{-1}\)) and \(v_w\) (m s\(^{-1}\)) are west-east and south-north wind velocity components. \(C_w\) is a velocity-dependent drag coefficient (0.0015) and \(\rho_g\) is the density of air with 1.3 kg m\(^{-3}\).Bottom stress \(\tau_{bx}\) calculated using the current at the bottom level for 2002–2017. The formula to calculate \(\tau_{bx}\) follows the theory applied by [43].

\[
\tau_{bx} = \rho_g C_b u_b \sqrt{u_b^2 + v_b^2}
\]

\(u_b\) (m s\(^{-1}\)) and \(v_b\) (m s\(^{-1}\)) are zonal and meridional components of bottom current velocity. \(C_b\) is a velocity-dependent drag (0.0025) coefficient and \(\rho_g\) is the density of seawater with 10125 kg m\(^{-3}\). The bottom current velocity component was not rotated to the alongshore direction, which potentially underestimated the bottom stress. \(\tau_{wx}\) and \(\tau_{bx}\)
0 N.m\(^{-2}\) was considered as downwelling favorable.

2.4. Data Processing and Statistical Analysis

Chl-a and physical variables in the study region were analyzed through monthly mean climatology. The spatial and temporal variability of total Chl-a was determined using a standard Empirical Orthogonal Function (EOF) analysis with a singular value decomposition (SVD) technique. The method finds spatial patterns of variability, their time variation, and a measure of each pattern’s magnitude [45]. EOF calculates a set of orthogonal functions or spatio-temporal components, which can be used for constructing the original data set at all points during the study periods. The first mode, having the largest eigenvalue, typically accounts for a considerable fraction of the variance of the data or explains the dominant variability of the data set. SVD is one of the primary methods for computing the EOFs for a grid of time series of observations besides the scatter matrix method [46]. Using the SVD method, we could quantify the total variance of the Chl-a concentration in both orthogonal and independent modes as it describes the temporal amplitudes of the spatial eigenvectors and their associated eigenvalues [47]. The result containing the highest percentage of the Chl-a variability, both spatial and temporal that allow us to determine (i) the most contrasting areas in terms of the spatial Chl-a variability and (ii) the main contrasting months in terms of the temporal Chl-a variability in the southern Java coast. This approach has been successfully determined the space-time features of Chl-a data [47].

For analyzing the physical variable's contribution and the prominent factors promoting the Chl-a variances, the Linear Pearson correlation analysis between Chl-a and the physical variables for the most contrasting month was performed by extracting the value of these variables at 10 points. The points were chosen in the domain according to the bathymetry and bottom stress features to cover the current-driven investigations on the shelf of our domain. For this, all the variables were re-gridded to the lowest spatial resolution (~25 km) as applied before [47]. Linear stepwise regression was performed at 10 points to assess the association between the Chl-a and its predicting physical variables for the most contrasting month. A stepwise method was chosen to find the best explanatory model from all the possible combinations of the predictor variables Akaike’s information criterion (AIC) [48]. The smallest achieved value of AIC indicates the best model, i.e., the best combination of the physical predictor variables that explains the largest amount of the variation in the response variable (Chl-a).

The possibility of current-driven upwelling or water masses bottom uplift was investigated used vertical cross-shelf temperature and alongshore current. The section was made in the region with the most upwelling-favorable bottom stress features resulted from the Linear Pearson and stepwise regression models.

2.5. Data Reliability

2.5.1. Chlorophyll-a

The merged OC-CCI total Chl-a data product has several improvements, including inter-sensor bias-corrected time-series data that improves spatial and temporal coverage, maintains rigorous standards for data quality, error characterization, and per-pixel uncertainty characterization based on its validation [49].

2.5.2. Wind

The ECMWF-based wind has been used for inputs of many ocean models in marine forecasting, for ocean forces, including their associated biases [50]. ERA5 is the latest reanalysis dataset from the European Centre for Medium-range Weather Forecasts (ECMWF) after ERA-Interim [51]. ERA5 comes with many improvements compared with ERA-Interim, most notably better spatial (25 km) and temporal resolution (1h), a better representation of geophysical processes in the forecast model, and more extensive observational inputs to the data assimilation system [52]. Besides, it is archived at the hourly time step, uses a more advanced assimilation system, and includes more sources of data [53]. It is produced using high-resolution forecasts (HRES) at 25 km resolution (one-fourth of the spatial resolution of the operational model), and it computes atmospheric variables at 139 pressure levels. Data for the 1979–2018 period were released in March 2019, and in the next few years, the dataset will cover the period from 1950 to near real-time [54]. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Many researchers have widely used the dataset and can conduct comprehensive global simulations, long-term simulations for climate studies [52]. ERA5 winds show a 20% improvement relative to ERA-Interim and perform better in terms of mean and transient wind errors, wind divergence, and wind stress curl biases [50].

2.5.3. Reanalysis Data

Reanalysis data has been widely used in atmospheric sciences to assess the impact of observing system changes, gauge progress in modeling and assimilation capabilities, and obtain state-of-the-art climatologies to evaluate forecast-error anomalies [51]. The product GLOBAL-REANALYSIS-PHY-001-030 (hereafter called GLORYS12V1 reanalysis) consists of global ocean reanalyses datasets at 1/12° horizontal resolution. [55] obtained a series of diagnostics on
GLORYS12V1 reanalysis with several summaries, which will be described in this section. In terms of SST data, the reanalysis is very stable from the 2000’s up to 2016. The global mean SST of GLORYS12V1 reanalysis is close to the observations with a weak (warm) misfit of less than 0.1°C all along with the reanalysis. The global positive SST linear trend is highly consistent with AVHRR data. Since a small warm bias (up to 0.1°C) was found in the 0-500 m layer (located between 100 and 200 m), the reanalysis beat the climatology for the bias and the RMS with lower RMS differences in the 0-500 m layer depth. In terms of ocean current, this reproduces well the main ocean currents. Root Mean Square Difference (RMSD) is generally smaller than 0.25 m.s⁻¹ in the water column. In terms of SSHA, GLORYS12V1 reanalysis is very close to altimetric observations and has a good ability to describe the sea level variability. Regional trends are particularly well reproduced. Unfortunately, however, the globally averaged sea level trend is slightly underestimated (2.66 mm year⁻¹) compared to the Aviso SLA CCI observed estimates (3.27 mm year⁻¹). A global and constant 0.07 cm bias is present during the 2005-2016 time period. However, long-term in-situ observations data are highly suggested to get more ample evidence for supporting our result.

3. Results

3.1. Spatio-Temporal Variability of the Annual Cycle of Chlorophyll-a

The annual climatological cycle of Chl-a shows a seasonal pattern in the oceanic region, with the highest Chl-a concentration values from June to November (> ~1.5 mg m⁻³) and the lowest, from December to May (< ~1 mg m⁻³; Fig. 2).

![Monthly mean climatology of total chlorophyll-a (Chl-a) in the southern Java coast from January 2002 to December 2017. The Chl-a is represented by a color scale.](Image)

The shelf region has the highest Chl-a throughout a year with a value above the background (0.2 mg m⁻³). The high Chl-a seems to propagate westward from June and reach its peak during September, while Chl-a with value > ~0.25 mg m⁻³ was covered more than half of our study domain. This propagation encountered relaxation during October and November. The relaxation remains Chl-a with a value of 0.25 – 1 mg m⁻³ across the shelf during December. Chl-a with value > ~2 mg m⁻³ formed a band of high value in the shelf during August and becomes wider during September and October until crossing the shelf mostly in the eastern region.

The Empirical Orthogonal Functions (EOFs) from the monthly total Chl-a values revealed a seasonal signal shown by the first and second modes, explaining 95.88% of the total variance in the annual cycle of Chl-a in the domain (Fig. 3). The first mode explains 92.12% of the Chl-a annual variability, while the second mode explains 3.76% (Fig. 3A, B). The temporal EOF of the first mode (Fig. 3A) showed a noted seasonal pattern, characterized by increasing Chl-a from August to October, coincident with the high amplitude of the annual cycle (> ~0.01) along the southern Java sea shelf in our domain decreasing towards the oceanic zone (Fig. 3C). The second mode showed a smaller amplitude in both spatial and temporal modes than Mode 1 (Fig. 3B, D). According to this result, in terms of the temporal variability, March and September were chosen as the most contrasting months for further analysis to explain the Chl-a variation connected with the physical drivers. In terms of the spatial variability of Chl-a, we expected different behavior in the shelf regions according to the marked amplitude resulted from spatial EOF modes and the bathymetry features; the one is in the western side, that is the region between 108.5°E – 109.5°E, and the other is in the region between 112°E – 113°E, the narrow shelf.

Fig. 3 Two modes of Principal Empirical Orthogonal Function (EOF) resulted from the annual climatological cycle of the total Chl-a in the South Java region: A, B - temporal EOF modes, C, D - corresponding spatial EOF modes

3.2. Spatial Patterns of the Physical Variables in March and September

3.2.1. Wind Stress and Bottom Stress

In March, the wind stress was downwelling favorable (τₓᵧ > 0), which covered the whole oceanic region of our domain (Fig. 4A). The western side of the
oceanic region, particularly the area between 8.9°S and 108.109°E, encounters the highest wind stress (>0.2 N m⁻²), decreasing towards the eastern side of the domain and shelf. Compare with March, the wind stress in September was higher but in reverse directions. During this time, wind stresses mostly upwelling favorable ($\tau_{wx} < 0$) with the lowest value (<0.02 N m⁻²) at the eastern and the shelf increasing towards the western side off the coast (Fig. 4B).

Monthly climatology of the bottom stress revealed a marked region with westward circulations or upwelling favorable bottom stress ($\tau_{bx} < 0$) in the shelf area, varies from 0.02 to 0.1 N m⁻², spanning longitudinally from 108.5°E until 112.5°E in March but not in September (Fig. 4C). According to the contrasting conditions, this area will be chosen for further examination to understand better the connection between Chl-a dynamics and its physical driver. Another notable feature is the weak westward circulation (-0.03 N m⁻²$\leq \tau_{bx} < -0.01$ N m⁻²) off the coast at the position of 9.5°S, 110°E and 9.5°S, 111°E (Fig. 4, top). In September, the bottom stress mostly downwelling favorable ($\tau_{bx} > 0$) with the highest value in the shelf area (0.05 – 0.1 N m⁻²) decreasing towards off coast.

3.2.2. Sea Surface Temperature (SST) and Sea Surface Height Anomaly (SSHA)

In March, SST varies from 29.2 to 29.5°C with SSHA higher (> 0.05 m) along the coast and at the center off coast of the domain than in the western part of the domain (< 0.04 m) (Fig. 5A, B). In September, the surface temperature was colder than in September with a value lower near the coast (<25 °C) increasing towards off coast to value >26 °C with SSHA lower along the shelf and in the eastern part of the domain (< -0.16 m) gradually decreased towards southwestern corner of the domain (Fig. 5C, D, bottom).

3.2.3. Pearson Analysis and Stepwise Regression Model

The Pearson analysis and stepwise regression model were performed at 10 points at the shelf break (depth ± 200 m) and adjacent area by considering the spatially bottom stress features and data availability to understand better the connection between Chl-a and the physical variables (Fig. 7).

Pearson analysis from the monthly climatology data shows no correlation between Chl-a and SSHA in March. Several points showed the correlation between Chl-a and SST at the western points (Points 2-4) and the easternmost point (Point 10) with a 0.05 significance level. Still, in March, Chl-a correlated with the wind stress at Point 5 and correlated with the bottom stress at Point 3 at the 0.05 significance level. It can be concluded that the physical variables have a weak correlation to Chl-a variance at most of the points in March. In September, Chl-a has a significant correlation with SST, SSHA, and wind stress at most of our analysis points. In September, The SST and SSH at the western part (Points 1-5) and the eastern part (Points 8-10) have a significant correlation at the 0.05 level with Chl-a. Only two physical variables showed a significant correlation with Chl-a at the 0.01 level, SST at Point 9 and SSHA at Point 4. The alongshore wind
mostly correlated with Chl-a at the western part (Points 1-5) and the easternmost points (Point 10) with only the alongshore bottom stress at Point 2, which significantly correlated with Chl-a at the 0.05 level.

Table 1 Pearson correlation analysis results from monthly mean Chl-a and physical variables at each point during two contrasting months. Only values with significance at the 0.01 (**) and 0.05 (*) levels were shown.

<table>
<thead>
<tr>
<th>Mar</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>SST</td>
<td>-0.51* -0.54* -0.62* -</td>
</tr>
<tr>
<td>SSHA</td>
<td>- - - - - - - -</td>
</tr>
<tr>
<td>τbw</td>
<td>- - - 0.57* - - - - -</td>
</tr>
<tr>
<td>Tbw</td>
<td>- 0.58* - - - - - -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sep</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>SST</td>
<td>-0.58* -0.57* -0.59* -0.64* -0.52* - - -0.65** -0.62*</td>
</tr>
<tr>
<td>SSHA</td>
<td>-0.59* -0.58* -0.59* -0.66** -0.60* - - -0.55* -0.62* -0.59*</td>
</tr>
<tr>
<td>τbw</td>
<td>0.62* 0.62* 0.54* 0.58* - - - - 0.57*</td>
</tr>
<tr>
<td>Tbw</td>
<td>- 0.62* - - - - - -</td>
</tr>
</tbody>
</table>

Note: Mar: March; Sep: September; SST: Sea Surface Temperature; SSHA: Sea Surface Height Anomaly; τbw and τbw: wind stress and bottom stress, respectively.

In March, the stepwise regression model is relatively poor to model the combination of physical variables and its interaction in explaining the Chl-a dynamics (R²<0.5), even though the model was significant in describing the observation (p-model < 0.05) at several points (Table 2). The results noted that τbw was significant in explaining the Chl-a dynamics at Point 3 (p-value = 0.05), while SST and τbw were significant at Point 10 (p-value =5.3e-04 and 0.007 respectively). In September, the wind usually occurs as a predictor of Chl-a functions at all points with a significant p-value, particularly at the westernmost and easternmost points (Points 1–5 and 9-10, respectively). For this result, it can be concluded that wind is the main force to the Chl-a dynamic in September. Besides the partial contributions, several interaction terms were shown as a predictor in the regression models, significantly at the westernmost Points 1-4 in September (Table 2).

Table 2 The stepwise linear regression to obtain the physical variables and their interaction in explaining the Chlorophyll-a dynamics in the South Java Sea shelf for March (MAR) and September (SEP). The conditional tests show the best combination of the Physical predictor variables used in this study that explain the largest amount of the variation in the response variable (Chl-a) based on the smallest value of Akaike’s information criterion (AIC). R² is the proportion of the explained variation for the model, p-model is the p-value of the model to show how significant the model to the observation is. The sign “:” between two variables in the predictor (p-value) columns indicates interaction between the two. Only significant values are shown (p < 0.05).

<table>
<thead>
<tr>
<th>Points</th>
<th>R²</th>
<th>p-model</th>
<th>AIC</th>
<th>Predictors (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR</td>
<td>1</td>
<td>0.24</td>
<td>-</td>
<td>-39.33</td>
</tr>
<tr>
<td>2</td>
<td>0.49</td>
<td>0.05</td>
<td>-42.56</td>
<td>SSS(0.0001), τbw(0.00007), SSHA: τbw(0.005)</td>
</tr>
<tr>
<td>3</td>
<td>0.49</td>
<td>0.02</td>
<td>-40.42</td>
<td>SSS(0.0001), τbw(0.00007), SSHA: τbw(0.006), (t_{bw} \times \tau_{bw})</td>
</tr>
<tr>
<td>4</td>
<td>0.39</td>
<td>0.01</td>
<td>-30.52</td>
<td>SSS(0.0001), τbw(0.00007), SSHA: τbw(0.006), (t_{bw} \times \tau_{bw})</td>
</tr>
<tr>
<td>5</td>
<td>0.44</td>
<td>0.03</td>
<td>-21.98</td>
<td>SSS(0.0001), τbw(0.00007), SSHA: τbw(0.006), (t_{bw} \times \tau_{bw})</td>
</tr>
<tr>
<td>6</td>
<td>0.14</td>
<td>-</td>
<td>-55.92</td>
<td>SSS(0.0001), τbw(0.00007), SSHA: τbw(0.006), (t_{bw} \times \tau_{bw})</td>
</tr>
<tr>
<td>7</td>
<td>0.20</td>
<td>-</td>
<td>-43.69</td>
<td>(t_{bw} \times \tau_{bw})</td>
</tr>
<tr>
<td>8</td>
<td>0.23</td>
<td>-</td>
<td>-42.95</td>
<td>(t_{bw} \times \tau_{bw})</td>
</tr>
<tr>
<td>9</td>
<td>0.26</td>
<td>0.05</td>
<td>-29.88</td>
<td>SSS(0.0001), τbw(0.00007), SSHA: τbw(0.006), (t_{bw} \times \tau_{bw})</td>
</tr>
<tr>
<td>10</td>
<td>0.68</td>
<td>0.001</td>
<td>-54.32</td>
<td>SSS(0.0001), τbw(0.00007), SSHA: τbw(0.006), (t_{bw} \times \tau_{bw})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEP</th>
<th>R²</th>
<th>p-model</th>
<th>AIC</th>
<th>Predictors (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.88</td>
<td>2.1e-05</td>
<td>35.34</td>
<td>SSS(0.00001), τbw(0.00007), SSHA: τbw(0.005)</td>
</tr>
<tr>
<td>2</td>
<td>0.92</td>
<td>1.6e-05</td>
<td>35.77</td>
<td>SSS(0.00001), τbw(0.00007), SSHA: τbw(0.006), (t_{bw} \times \tau_{bw})</td>
</tr>
<tr>
<td>3</td>
<td>0.85</td>
<td>6.7e-05</td>
<td>41.90</td>
<td>SSS(0.00002), τbw(0.00004), SSHA: τbw(0.003)</td>
</tr>
<tr>
<td>4</td>
<td>0.86</td>
<td>0.0002</td>
<td>65.17</td>
<td>SSS(0.00001), τbw(0.00007), SSHA: τbw(0.001)</td>
</tr>
</tbody>
</table>
3.2.4. Cross-Shelf Temperature and Alongshore Current Vertical Section

According to the result described above, Pearson analysis and regression model noted that the bottom stress usually occurred as a variable that influenced the Chl-a dynamics at Point 3 with a significant correlation value. This result leads to the further investigation of the current-driven upwelling occurrences at Point 3. The vertical section of the monthly mean temperature and the alongshore current was performed to assess the bottom uplift caused by the encroaching boundary current at the shelf edge.

The vertical section of the monthly mean cross-shelf alongshore current (in this case: zonal current) and temperature at 119.5°E, from 7.8 – 8.2 °S shows the process that occurred in the water column in March 2013 compare to September 2013 (Fig. 8). The year 2013 was chosen since it is the normal year of upwelling (a year with no positive IOD nor ENSO, Fig. 8 in [27]) to see the differences of the water column condition between two contrasting months in the same year. In March 2013, the alongshore current mostly flowed westward (U<0) at the depth above 200 m, including at Point 3, and encroached the shelf edge (Fig. 8A). In terms of bottom stress, it’s upwelling-favorable bottom stress. Coinciding with these conditions, the isotherm, particularly 15-25 °C, is mostly deeper at the shelf edge than offshore or with no uplift at the shelf edge (Fig. 8A). An eastward flow dominantly occurs offshore at a depth below 300 m (Fig. 8A). Contrastly, in September 2013, the current mostly flows eastward (U>0) at a depth above 200 m, including at Point 3 with a small part of a westward flow at depth below 300 m offshore (Fig. 8B). The isotherm bands of 20 °C were found at the shallower depth in this month (<200 m) than in March (>200 m) since September is a wind-driven upwelling period. Besides, isotherm 25 °C, which was found at a depth below 100 m in March, reaches the near-surface depth (±25 m) in this month (Fig. 8B). The same process (a westward flow in March and an eastward flow in September) occurs every year at this point with different patterns and strengths due to additional forces differences each year, such as the existence of positive IOD or ENSO.

![Fig. 8 Vertical section of the monthly mean cross-shelf current velocity snapshot (shading) with temperature contours (black lines) at 109.5E, from 7.8S to 8.2S (C) on (A) March 2013 and (B) September 2013. Black triangles show Point 3 location among the section. Red shading/ Positive value (blue shading /negative value) represents the eastward (westward) flow. Bottom shelf use bathymetry from ETOPO1.Isobath 40 and 200 m marked by contour lines in (C)](image)

4. Discussion

Monthly mean climatology revealed Chl-a patterns seasonally with a high value (>0.2 mg m⁻³) during SE monsoon (May - September) while the upwelling occurs in this region but not during NW monsoon as reported earlier by [36], [56]. Chl-a started to increase in May and peaked in September. The upwelling signal represented by high Chl-a, as seen in Fig. 2, was moved westward [27]. The seasonal signal of Chl-a was strongly explained by the first mode of EOF analysis result, which explains 95.88% of the total variance in the annual cycle of Chl-a. The temporal EOF of the first mode showed March and September as the months of lowest and highest Chl-a, respectively, which were considered two contrasting months for further analysis.

March is the period of downwelling favorable wind, which represents positive wind stress as the westerly NW monsoonal winds blow during this time. The condition reverses during September while the wind stress was upwelling favorable (τwx < 0) as the southeasterly SE monsoonal wind blows in our domain during this time. This result was relevant to the earlier study of South Java upwelling, which is associated with the seasonal southeasterly wind.

According to the bottom stress patterns, the circulation at the shelf edge could be associated mainly with the semi-annually boundary current SJC, relevant with the pattern found by [57] that at the beginning of
the mooring in mid-March 1997, the daily averaged surface current at 55 and 115 are toward the north-west (Fig. 2B and 2C in [57]) and remains to the south-east at all depths from August until October. Further studies are still needed to obtain the contribution of the individual process to the net flow for detailed results.

According to the Pearson analysis, September has many more physical variables correlated with Chl-a than March due to upwelling during this time. During the upwelling period (SE monsoon), the alongshore wind drives the water masses’ movements at the surface offshore, causing the low SSHA near the coast, and generates vertical motion of cold water masses from the depth to the surface, decreasing the SST. The ocean upwelling associated with this ocean-atmosphere feedback process was studied by [58]. It can be seen that Chl-a significantly correlated at 0.05 significance level with SST, SSHA, and wind stress at most of the points located at the shelf (Table 1). The wind stress usually occurs as a predictor with a significant value in the stepwise linear regression at most of the western and easternmost points (Table 2). We suggested that winds are the main driver of Chl-a dynamics through wind-driven upwelling at the shelf area during September or the upwelling period. This result relevant to previous studies of South Java upwelling [35].

Contrastly, Chl-a at Points 6 and 7 were not shown any significant correlation with the physical variables, both in March and September. We conclude that the physical variables used in this study highly influenced the Chl-a in the shelf area. Even though most of the physical variables have not shown a significant correlation with the Chl-a in March, the Pearson analysis reveals an important result that the bottom stress was significantly correlated with Chl-a at Point 3, where it was an upwelling-favorable bottom stress (negative bottom stress) region as shown in Fig. 4B. Besides, the stepwise linear regression reveals the important role of the bottom stress at Point 3 since it is a significant predictor in the model. These results lead the further investigation to reveal the possibilities of current-driven upwelling occurrence or water masses uplift at this point.

The vertical section of the cross-shelf temperature gradient (Fig. 8A) does not show the current-driven upwelling nor the water masses uplift, although there was an upwelling favorable bottom stress due to encroaching westward bottom flow at the shelf edge. We suggested that the upwelling-favorable bottom stress at Point 3 in March is insufficient to lift dense water or nutrient-rich water through onshore flow in the BBL to the shallower depth. In turn, it couldn’t enhance the Chl-a at the surface. This conclusion can be seen in Fig. 2 that Chl-a is relatively lower in March (<1 mg m⁻³) than in September (>1.5 mg m⁻³) at the shelf. This result further confirms that upwelling in the southern coast of Java only occurs in the SE monsoon (June-September) but does not occur in the NW monsoon (December-March).

This study uses remotely-sensed and reanalysis data; no in-situ data is used. Future studies are encouraged, combining in situ experiments with satellite-based measurements and reanalysis data for better analysis and results. The Chl-a variability only involves four upwelling variables SST, SSHA, wind stress, and bottom stress. Other influencing factors to phytoplankton growth and its Chl-a biomass, such as light availability and nutrients [47], [59], are not involved and need to be considered in interpreting the results. In addition, Chl-a, which represents phytoplankton communities and biomass, are governed by many limiting and controlling factors, such as nutrient availability, light climate, temperature, salinity, competition, parasites, and grazing [60]. Even though the analysis presented here focuses largely on the monthly climatology, the data used here have a relatively long time series (almost two decades). They have provided sufficient results relevant to previous research.

5. Conclusions

Chl-a was varied seasonally in our domain with a higher value during SE monsoon than NW monsoon due to upwelling. The alongshore winds were the major variable influencing the Chl-a dynamic in the shelf area during the upwelling period. During the downwelling period, bottom stress significantly correlates with the Chl-a at the 109.5E, 8S of our domain. There was upwelling-favorable bottom stress at Point 3 in March, but the vertical section of the cross-shelf temperature gradient does not show the current-driven upwelling nor the water masses’ uplift. In turn, it couldn’t enhance the Chl-a at the surface. The physical variables used in this study (SST, SSHA, wind stress, and bottom stress) significantly correlate with Chl-a in the shelf area. They highly suggest that the southern Java upwelling studies cannot ignore the shelf process. Future studies are encouraged, comparing the process and conditions in the shelf area and its open waters.

Finally, it is highly suggested to combine different observational (in situ and satellite data) and modeling tools to evaluate our studies, particularly in the same domain or points. We expect that this study will supply additional information in understanding the productive dynamics of the South Java coast, leading to better management decisions regarding fisheries, tourism centers, and environmental policies.

Acknowledgment

The study was fully funded by LIPI’s COREMAP CTI 2021 2022 (17/A/DK/2021). ASB acknowledges Lembaga Ilmu Pengetahuan Indonesia (LIPI) for supporting this study through the Doctoral By-Research Programs. We acknowledge the E.U.
Copernicus Marine Service Information that provided satellite data. The manuscript is part of doctoral theses in the Faculty of Fisheries and Marine Sciences, Institut Pertanian Bogor (IPB), Bogor, Indonesia.

References

[61] EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS. ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 2019. https://doi.org/10.5065/BH6N-S2N0

参考文献：

养转移效率。科学报告，2019，9：2044。
https://doi.org/10.1308/s41598-019-38507-9
https://doi.org/10.1016/j.jeme.2018.10.036
https://doi.org/10.1016/j.jembe.2019.05.006
https://doi.org/10.3390/rs10060834
https://doi.org/10.1029/2019JC015034
[8] GEBREHIWOT M. 、KIFLE D. 和TRIEST L. 划分流体动力学引起的物理变量和营养物对浅层热带水库（科卡，埃塞俄比亚）中浮游植物组合的影响。湖沼学，2020，21(3)：269-274。
https://doi.org/10.1007/s10201-020-00611-5
https://doi.org/10.1007/s13131-018-1342-x
https://doi.org/10.3389/fmars.2019.00485
[12] LAHLILI H. 、WIRASATRIYA A. 、GENSAC E. 、HELMI M. 、KUNARSO 和KISMAWARDHANI R. A. 基于卫星测量的爪哇南部海岸印度洋金枪鱼渔捞的环境方面。第四届地理信息学国际研讨会论文集，马琅，2018，第1-6页。
https://doi.org/10.1109/ISYG.2018.8612020
https://doi.org/10.1088/1755-1315/429/1/012043
https://doi.org/10.1175/JCLI-D-18-0513.1
https://doi.org/10.1117/12.2542855
https://doi.org/10.1175/JCLI-D-18-0210.1
[17] 张 C. 、ADAMES F. 、KHOUIDER B. 、WANG B. 和 YANG D. 马登-朱利安振荡的四种理论。地球物理学评论，2020，58(3)：e2019RG000685。
https://doi.org/10.1029/2019RG000685
[18] MENEZES V. V. 、VYLANA M. L. 南印度洋准两年一次的罗斯比和开尔文波：热带和亚热带模式和印度洋偶极子。深海研究深入探讨专题研究，2019，166：43-63。
https://doi.org/10.1016/j.dr2r.2019.05.002
https://doi.org/10.1029/2019JC015839
[20] HAMEED S. N. 印度洋偶极子。牛津研究百科全书：气候科学，2018，1：1-35。
https://doi.org/10.1093/acrefore/9780190228620.013.619

[45] 贝穆德斯。关于海洋的经验正交函数表示。博士论文。汉堡大学，汉堡，2020。

[48] CAVANAUGH J. E., & NEATH A. A. 赤池信息准则：背景、推导、性质、应用、解释和改进。威利跨学科评论：计算统计，2019，11(3)：e1460。https://doi.org/10.1002/wics.1460

[59] PEI S. 和 LAWS E. A. 和 ZHU Y. 和 ZHANG H. 和 YE S. 和 YUAN H. 和 DING X. 中国辽东湾秋季营养动态及其
与浮游植物生长的相互作用。大陆架研究，2019，186：34-47。https://doi.org/10.1016/j.csr.2019.07.012

[61] 欧洲中程天气预报中心. 时代 5 再分析（0.25 度经纬度网格）。国家大气研究中心、计算和信息系统实验室的研究数据档案。2019。https://doi.org/10.5065/BH6N-5N20