Evaluating the Health Effects of RS2 Supplemented Diet in Healthy Rats

Ambreen Qadir, Mahr-Un-Nisa, Muhammad Sharif


Resistant Starch (RS2) gets more attention nowadays because of its physiological characteristic like dietary fiber. Recent research was conducted to check the hyperglycemic, hyperlipidemic, satiety hormone, and oxidative biomarkers in healthy male rats. All rats were divided into four groups (9 rats per group) and named according to diets and treatments. The healthy rats in the negative control (NC) received a basal diet, the rats in the other three groups were receiving RS2 with different levels in their diets, 0.20g/kg body weight, 0.30g/kg body weight, 0.40g/kg body weight were named HM0.20, HM0.30, HM0.40 respectively. In the case of lipid profile, significant (P<0.05) reductionin cholesterol, low-density lipoprotein (LDL), triglycerides, and increase in high-density lipoprotein (HDL) with HM0.40 level of RS2 were found. Blood glucose, insulin, and leptin level indicate a similar reduction trend with the last level of diet. In the hormonal profile, insulin and leptinshowed a significant (P<0.05) reduction; improvement in total antioxidants and reduction in total oxidants were observed with the highest level of RS2 supplemented diet.


Keywords: Resistant Starch, Blood Glucose, Lipid Profile, Hormones, Oxidative Stress.




Full Text:



LOCKYER S., & NUGENT A. P. Health effects of resistant starch. Nutrition Bulletin, 2017, 42(1): 10-41. https://doi.org/10.1111/nbu.12244

SOFI S. A., AYOUB A., and JAN A. Resistant starch as functional ingredient: A review. International Journal of Food Science and Nutrition, 2017, 2(6): 195-199. https://doi.org/10.1016/j.foodres.2010.02.004

MA Z., HU X., and BOYE J. I. Research advances on the formation mechanism of resistant starch type III: A review. Critical Reviews in Food Science and Nutrition, 2020, 60(2): 276-297. https://doi.org/10.1080/10408398.2018.1523785

HARRIS K. F. An introductory review of resistant starch type 2 from high-amylose cereal grains and its effect on glucose and insulin homeostasis. Nutrition Reviews, 2019, 77(11): 748-764. https://doi.org/10.1093/nutrit/nuz040

SNELSON M., JONG J., MANOLAS D., KOK S., LOUISE A., STERN R., and KELLOW N. J. Metabolic effects of resistant starch type 2: a systematic literature review and meta-analysis of randomized controlled trials. Nutrients, 2019, 11(8): 1833. https://doi.org/10.3390/nu11081833

JAEGER HINTZE L. Study of the Compensatory Mechanisms of Energy Balance during and After Weight Loss. Doctoral thesis, University of Ottawa, 2018. http://dx.doi.org/10.20381/ruor-22785

NEWBERRY M., ZWART A. B., WHAN A., MIEOG J. C., SUN M., LEYNE E., and RAL J. P. F. Does late maturity alpha-amylase impact wheat baking quality? Frontiers in Plant Science, 2018, 9: 1356. https://doi.org/10.3389/fpls.2018.01356

EREL O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 2004, 37(4): 277-285. https://doi.org/10.1016/j.clinbiochem.2003.11.015

STEEL R. G., TORRIES J. H. and DICKEY D. A. Principles and Procedures of Statistics A Biometrical. 3rd Ed. McGraw-Hill, New York, 1997.

DE ANGELIS-PEREIRA M. C., BARCELOS M. D. F. P., PEREIRA R. C., PEREIRA J. D. A. R., and DE SOUSA R. V. Chemical composition of unripe banana peels and pulps flours and its effects on blood glucose of rats. Nutrition & Food Science, 2016, 46(4): 504-516. http://dx.doi.org/10.1108/NFS-11-2015-0150

DIAMANT M., BLAAK E. E., and DE VOS W. M. Do nutrient–gut–microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obesity Reviews, 2011, 12(4): 272-281. https://doi.org/10.1111/j.1467-789x.2010.00797.x

WANG-FISCHER Y., & GARYANTES T. Improving the reliability and utility of streptozotocin-induced rat diabetic model. Journal of Diabetes Research, 2018, 2018: 8054073. https://doi.org/10.1155/2018/8054073

FETISSOV S. O. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nature Reviews Endocrinology, 2017, 13(1): 11. https://doi.org/10.1038/nrendo.2016.150

JYOTHSNA E., & HYMAVATHI T. V. Resistant starch: Importance, categories, food sources and physiological effects. Journal of Pharmacognosy Phytochemistry, 2017, 6(2): 67-69. https://www.phytojournal.com/archives/2017/vol6issue2/PartA/6-5-188-903.pdf

ASTINA J., & SAPWAROBOL S. Resistant maltodextrin and metabolic syndrome: a review. Journal of the American College of Nutrition, 2019, 38(4): 380-385. https://doi.org/10.1080/07315724.2018.1523028

BERGERON N., WILLIAMS P. T., LAMENDELLA R., FAGHIHNIA N., GRUBE A., LI X., and KRAUSS R. M. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk. British Journal of Nutrition, 2016, 116(12): 2020-2029. https://doi.org/10.1017/s0007114516004165

NICHENAMETLA S. N., WEIDAUER L. A., WEY H. E., BEARE T. M., SPECKER B. L., and DEY M. Resistant starch type 4 enriched diet lowered blood cholesterols and improved body composition in a double blind controlled cross over intervention. Molecular Nutrition & Food Research, 2014, 58(6): 1365-1369. https://doi.org/10.1002/mnfr.201300829

WAHJUNINGSIH S. B., HASLINA H., and MARSONO M. Hypolipidaemic effects of high resistant starch sago and red bean flour-based analog rice on diabetic rats. Materia Socio-Medica, 2018, 30(4): 232. https://doi.org/10.5455/msm.2018.30.232-239

BAROUEI J., BENDIKS Z., MARTINIC A., MISHCHUK D., HEENEY D., HSIEH Y. H., and MARCO M. L. Microbiota, metabolome, and immune alterations in obese mice fed a high-fat diet containing type 2 resistant starch. Molecular Nutrition & Food Research, 2017, 61(11), 1700184. https://doi.org/10.1002/mnfr.201700184

YOSHIDA N., SASAKI K., SASAKI D., YAMASHITA T., FUKUDA H., HAYASHI T., and KONDO A. Effect of resistant starch on the gut microbiota and its metabolites in patients with coronary artery disease. Journal of Atherosclerosis and Thrombosis, 2018, 26(8): 705-719. https://doi.org/10.5551/jat.47415

DAINTY S. A., KLINGEL S. L., PILKEY S. E., MCDONALD E., MCKEOWN B., EMES M. J., and DUNCAN, A. M. Resistant starch bagels reduce fasting and postprandial insulin in adults at risk of type 2 diabetes. The Journal of Nutrition, 2016, 146(11): 2252-2259. https://doi.org/10.3945/jn.116.239418

CAMELO-MÉNDEZ G. A., AGAMA-ACEVEDO E., ROSELL C. M., PEREA-FLORES M. D. J., and BELLO-PÉREZ L. A. Starch and antioxidant compound release during in vitro gastrointestinal digestion of gluten-free pasta. Food Chemistry, 2018, 263: 201-207. https://doi.org/10.1016/j.foodchem.2018.04.075

RAHMANI J., MIRI A., ČERNEVIČIŪTĖ R., THOMPSON J., DE SOUZA N. N., Sultana R., and HEKMATDOOST A. Effects of cereal beta-glucan consumption on body weight, body mass index, waist circumference and total energy intake: A meta-analysis of randomized controlled trials. Complementary Therapies in Medicine, 2019, 43: 131-139. https://doi.org/10.1016/j.ctim.2019.01.018

HEADLEY S. A., CHAPMAN D. J., GERMAIN M. J., EVANS E. E., HUTCHINSON J., MADSEN K. L., and VAZIRI N. D. The effects of 16-weeks of prebiotic supplementation and aerobic exercise training on inflammatory markers, oxidative stress, uremic toxins, and the microbiota in pre-dialysis kidney patients: a randomized controlled trial-protocol paper. BMC Nephrology, 2020, 21(1): 1-9. https://doi.org/10.1186/s12882-020-02177-x

SARDA F. A. H., GIUNTINI E. B., GOMEZ M. L. P., LUI M. C. Y., NEGRINI J. A., TADINI C. C., and MENEZES E. W. Impact of resistant starch from unripe banana flour on hunger, satiety, and glucose homeostasis in healthy volunteers. Journal of Functional foods, 2016, 24: 63-74. https://doi.org/10.1016/j.jff.2016.04.001

AMOAKO D. B., & AWIKA J. M. Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose. Food Chemistry, 2019, 285: 326-333. https://doi.org/10.1016/j.foodchem.2019.01.173

JAMAR G., CARANTI D. A., DE CASSIA CESAR H., MASQUIO D. C. L., BANDONI D. H., and PISANI L. P. Leptin as a cardiovascular risk marker in metabolically healthy obese: hyperleptinemia in metabolically healthy obese. Appetite, 2017, 108: 477-482. https://doi.org/10.1016/j.appet.2016.11.013

WHITE U., PETERSON C. M., BEYL R. A., MARTIN C. K., and RAVUSSIN E. Resistant starch has no effect on appetite and food intake in individuals with prediabetes. Journal of the Academy of Nutrition and Dietetics, 2020, 120(6): 1034-1041. https://doi.org/10.1016/j.jand.2020.01.017

DEMARTINO P., & COCKBURN D. Resistant starch: impact on the gut microbiome and health. Current Opinion in Biotechnology, 2019, 61: 66-71 http://dx.doi.org/10.1016/j.copbio.2019.10.008

MOHAMED W. S., HASSANIEN M. A., and SAYED ABOKHOSHEIM K. E. L. Role of ghrelin, leptin and insulin resistance in development of metabolic syndrome in obese patients. Endocrinology & Metabolic Syndrome, 2014, 3(122): 2161-1017. http://dx.doi.org/10.4172/2161-1017.1000122

GENTILE C. L., WARD E., HOLST J. J., ASTRUP A., ORMSBEE M. J., CONNELLY S., and ARCIERO P. J. Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women. Nutrition Journal, 2015, 14(1): 1-10. https://doi.org/10.1186/s12937-015-0104-2

DE SOUZA AQUINO J., BATISTA K. S., MENEZES F. N. D. D., LINS P. P., DE SOUSA GOMES J. A., and DA SILVA L. A. Models to evaluate the prebiotic potential of foods. Functional Food: Improve Health Through Adequate Food, 2017: 235-256. http://dx.doi.org/10.5772/intechopen.69174

SWEATT S., MAED S. K. S., and GOWER B. A. Effects of Resistant Starch Intake in Humans. Food and Nutrition Report, 2016, 1(2): 19-26. https://www.researchgate.net/publication/292132652_Food_and_Nutrition_Report_Vol_1_Issue_2_Effects_of_Resistant_Starch_Intake_in_Humans


  • There are currently no refbacks.