Spatial Distribution of Landslide Potential and Soil Fertility: A Case Study in Baturiti District, Tabanan, Bali, Indonesia
Abstract
Baturiti District is an area with history of high landslides yearly. Steep topography and steep slopes are some causes of landslides in the area. Minimal information regarding the potential for landslides can result in many victims and large losses if the disaster occurs in Baturiti District, Tabanan Regency, Bali Province-Indonesia. This study is crucial because of the urgency of the two factors that trigger land degradation. There has been no research on landslides on agricultural land and their relationship with soil fertility. Identical soil fertility is in loose soil, while loose soil is relatively easy to experience soil movement and cause landslides. This simple statement needs to be scientifically proven implemented in this research. Such conditions become a novelty in this scientific article. The purpose of this study was to identify the potential for landslides, the impact on agricultural land, and its correlation to the fertility of agricultural land. The method used is a survey method, soil analysis in the laboratory, and scoring with several landslide parameters, namely land use, slope, rainfall, landform, and geological structure. Soil fertility status analysis refers to the Soil Research Center (PPT) 1995 with 5 important parameters determining soil fertility status: CEC, Base Saturation, C-Organic, P-Total, and K-Total. Spatial data parameters were analyzed using a Geographic Information System. The results showed that the highest landslide susceptibility area was horticultural agricultural land (2,369.11 ha), applied to steep to very steep slopes. Another cause is the landform factor of the volcano's upper slopes, which has a soil-forming fraction dominated by coarse materials and high rainfall. Baturiti sub-district has low, medium, and high soil fertility status. The correlation between the vulnerability to landslides and soil fertility by (R2= 0.526). Such conditions indicate that areas with high landslide susceptibility have low soil fertility status with moderate correlation.
Keywords: spatial, geographic information system, landslide potential, soil fertility, Baturiti district.
https://doi.org/10.55463/issn.1674-2974.49.2.23
Full Text:
PDFReferences
NUGROHO S. P. Evaluasi Penanggulangan Bencana 2015 dan Prediksi Bencana. Badan Nasional Penanggulangan Bencana, Jakarta, 2016. https://adoc.pub/evaluasi-penanggulangan-bencana-2015-dan-prediksi-bencana-20.html
WU L., JIANG Y., ZHAO F., HE X., LIU H., and YU K. Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Scientific Reports, 2020, 10: 9568. https://doi.org/10.1038/s41598-020-66648-9
PUSAT PENELITIAN TANAH. Kriteria Penilaian Data Sifat Analisis Kimia Tanah. Balai Penelitian dan Pengembangan Pertanian Departemen Pertanian, Bogor, 1995.
CHEN W., PENG J., HONG H., SHAHABI H., PRADHAN B., LIU J., ZHU A.-X., PEI X., and DUAN Z. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 2018, 626: 1121-1135. https://doi.org/10.1016/j.scitotenv.2018.01.124
CHEN W., & LI Y. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena, 2020, 195: 104777. https://doi.org/10.1016/j.catena.2020.104777
SAIFULLOH M., SARDIANA I. K., and SUPADMA A. N. Pemetaan Kualitas Tanah pada Lahan Kebun Campuran dengan Geography Information System (GIS) di Kecamatan Tegallalang, Kabupaten Gianyar. E-Jurnal Agroekoteknologi Tropika, 2017, 6(3): 269-278. https://ojs.unud.ac.id/index.php/JAT/article/view/32436
TRIGUNASIH, N. M., & WIGUNA, P. P. K. Land Suitability for Rice Field and Conservation Planning in Ho Watershed, Tabanan Regency, Bali Province, Indonesia. Geographia Technica, 2020, 15(1). https://doi.org/10.21163/gt_2020.151.11
SEAMLESS DIGITAL ELEVATION MODEL (DEM) DAN BATIMETRI NASIONAL. 2018. https://tanahair.indonesia.go.id/demnas/#/
PUSAT STUDI BENCANA ALAM UNIVERSITAS GADJAH MADA. Penyusunan Sistem Informasi Penanggulangan Bencana Alam Tanah Longsor di Kabupaten Kulon Progo. Laporan Akhir. Pemerintah Kabupaten Kulon Progo Perencanaan Pembangunan Daerah, Yogyakarta, 2001.
BASOFI A., FARIZA A., AHSAN A. S., and KAMAL I. M. A comparison between natural and Head/tail breaks in LSI (Landslide Susceptibility Index) classification for landslide susceptibility mapping: A case study in Ponorogo, East Java, Indonesia. Proceedings of the 2015 International Conference on Science in Information Technology, 2015, pp. 337-342. http://dx.doi.org/10.1109/ICSITech.2015.7407828
CANTARINO, I., CARRION, M. A., GOERLICH, F., & IBAÑEZ, V. M. A ROC analysis-based classification method for landslide susceptibility maps. Landslides, 2019, 16(2): 265-282. https://doi.org/10.1007/s10346-018-1063-4
GUO Z., SHI Y., HUANG F., FAN X., and HUANG J. Landslide susceptibility zonation method based on C5. 0 decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geoscience Frontiers, 2021: 101249. https://doi.org/10.1016/j.gsf.2021.101249
SARDIANA, I. K., SUSILA, D., SUPADMA, A. A., and SAIFULLOH, M. Soil Fertility Evaluation and Land Management of Dryland Farming at Tegallalang Sub-District, Gianyar Regency, Bali, Indonesia. IOP Conference Series: Earth and Environmental Science, 2017, 98(1): 012043. https://iopscience.iop.org/article/10.1088/1755-1315/98/1/012043
COHEN P., WEST S. G., and AIKEN L. S. Applied multiple regression/correlation analysis for the behavioral sciences. Routledge, New York, 2014. https://www.taylorfrancis.com/books/mono/10.4324/9780203774441/applied-multiple-regression-correlation-analysis-behavioral-sciences-jacob-cohen-patricia-cohen-stephen-west-leona-aiken
VON LÜHMANN A., LI X., MÜLLER K. R., BOAS D. A., and YÜCEL M. A. Improved physiological noise regression in fNIRS: a multimodal extension of the general linear model using temporally embedded canonical correlation analysis. NeuroImage, 2020, 208: 116472. https://doi.org/10.1016/j.neuroimage.2019.116472
DEWI I. A. C. Analisis Usahatani Kentang (Solanum tuberosum L) Kasus di Subak Abian Batur Sari, Desa Candikuning, Kecamatan Baturiti, Kabupaten Tabanan. dwijenAGRO, 2019, 9(2): 117-122. https://doi.org/10.46650/dwijenagro.9.2.915.117-122
LUKITASARI M. H. A., ANGGRENI I. G. A. A. L. and DEWI I. A. L. An Analysis of Marketing Margin and Elasticity of Bell Pepper Commodity Price Transmission (A Study in Candikuning Village, Baturiti District, Tabanan Regency). Agrisocionomics: Jurnal Sosial Ekonomi Pertanian, 2020, 4(2): 321-329. http://dx.doi.org/10.14710/agrisocionomics.v4i2.7071
LAKSMI N. M. N. D., WIDYANTARA I. W., and USTRIYANA I. N. G. Pendapatan Usahatani Pakcoy (Brassica rapa L) di Desa Baturiti, Kecamatan Baturiti, Kabupaten Tabanan. Jurnal Agribisnis dan Agrowisata, 2021, 10(1): 311-320. https://ojs.unud.ac.id/index.php/JAA/article/view/75926
WIRYANATA, I. W. G., & SUHARJO, A. Analisis Pendapatan Usahatani Stroberi (Fragaria Chiloensis L) Di Desa Candikuning Kecamatan Baturiti Kabupaten Tabanan. dwijenAGRO, 2021, 11(1): 1-11. http://ejournal.undwi.ac.id/index.php/dwijenagro/article/view/1078
ADIJAYA I. N. Keragaan Pertumbuhan Dan Hasil Serta Pola Panen Dua Varietas Cabai Lokal Di Desa Antapan, Kecamatan Baturiti, Kabupaten Tabanan. Buletin Teknologi Dan Informasi Pertanian, 2021, 19(1): 19-25. https://bali.litbang.pertanian.go.id/wp-content/uploads/2021/07/Buletin-BPTP-Bali-Volume-19-Nomor-1-April-Tahun-2021.pdf
WULAN T. R., AMBARWULAN W., PUTRA A. S., IBRAHIM F., PUTRA M. D., MARYANTO D., and MAULANA E. Pemetaan Cepat Kawasan Terdampak Bencana Longsor dan Banjir di Kabupaten Bangli, Provinsi Bali. Majalah Geografi Indonesia, 2017, 31(2): 44-50. https://doi.org/10.22146/mgi.26230
FITRIANINGRUM M. E. Zonasi Rawan Longsor di Desa Pagerharjo Kecamatan Samigaluh Kabupaten Kulonprogo Yogyakarta. Jurnal Geografi Gea, 2018, 18(2): 181-190. https://doi.org/10.17509/gea.v18i2.8481
CHRISTANTO N., SARTOHADI J., SETIAWAN M. A., HADI M. P., JETTEN V. G., and SHRESTHA D. P. Investigating The Effect of Conservation Techniques on the Land Degradation of Tropical Catchment Prone to Landslide. Jurnal Geografi: Media Informasi Pengembangan dan Profesi Kegeografian, 2018, 14(2): 1-10. http://journal.unnes.ac.id/sju/index.php/ujet
PUTRA I. W. K. E., & DIATMIKA I. P. G. Pemetaan Risiko Bencana Tanah Longsor Pada Jalur Arteri Transportasi Bali Utara-Bali Selatan Di Wilayah Desa Gitgit, Kecamatan Sukasada, Buleleng-Bali. Proceedings of the Seminar Nasional Pengabdian Kepada Masyarakat, 2017, pp. 328-335. http://digilib.mercubuana.ac.id/manager/t!@file_artikel_abstrak/Isi_Artikel_230142982821.pdf
KARIASA I. N, PUJA I. N., and KUSMAWATI T. Identifikasi Potensi Longsor di Kecamatan Baturiti Tabanan Bali. E-Jurnal Agroekoteknologi Tropika, 2018, 7(2): 174-183. https://ojs.unud.ac.id/index.php/JAT/article/view/39359/23839
ECOLEX. Law of the Republic of Indonesia No. 24/2007 Concerning Disaster Management. 2007. https://www.ecolex.org/details/legislation/law-of-the-republic-of-indonesia-no-242007-concerning-disaster-management-lex-faoc114997/#:~:text=24%2F2007%20Concerning%20Disaster%20Management.,-Country%2FTerritory%20Indonesia&text=This%20Law%20enters%20into%20force,the%20role%20of%20international%20organizations.
KALIUKH I., TROFYMCHUK O., FARENYUK G., IVANIK O., and SHEKHUNOVA S. Practical measures for landslide risk mitigation in the Ukrainian Carpathians. Proceedings of the First EAGE Workshop on Assessment of Landslide and Debris Flows Hazards in the Carpathians, 2019, pp. 1-5. https://doi.org/https://doi.org/10.3997/2214-4609.201902165
FERLISI S., GULLÀ G., NICODEMO G., and PEDUTO D. A multi-scale methodological approach for slow-moving landslide risk mitigation in urban areas, southern Italy. Euro-Mediterranean Journal for Environmental Integration, 2019, 4(1): 1-15. https://doi.org/https://doi.org/10.1007/s41207-019-0110-4
KWAN J. S., LAM H. W., NG C. W., LAM N. T., CHAN S. L., YIU J., and CHEUK J. C. Recent technical advancement in natural terrain landslide risk mitigation measures in Hong Kong. Hong Kong Institution of Engineers Transactions, 2018, 25(2): 90-101. https://doi.org/https://doi.org/10.1080/1023697x.2018.1462105
BORGATTI L., CORSINI A., MARCATO G., RONCHETTI F., and ZABUSKI L. Appraise the structural mitigation of landslide risk via numerical modelling: a case study from the northern Apennines (Italy). Georisk, 2008, 2(3): 141-160. https://doi.org/https://doi.org/10.1080/17499510802200261
MIANO A., MELE A., CALCATERRA D., MARTIRE D. D., INFANTE D., PROTA A., and RAMONDINI M. The use of satellite data to support the structural health monitoring in areas affected by slow-moving landslides: a potential application to reinforced concrete buildings. Structural Health Monitoring, 2021, 20(6): 3265-3287. https://doi.org/10.1177%2F1475921720983232
SULTANA N., & TAN S. Landslide mitigation strategies in southeast Bangladesh: Lessons learned from the institutional responses. International Journal of Disaster Risk Reduction, 2021, 62: 102402. https://doi.org/https://doi.org/10.1016/j.ijdrr.2021.102402
PUJA I. N., & ATMAJA I. W. D. Kajian Status Kesuburan Tanah untuk menentukan Pemupukan Spesifik Lokasi Tanaman Padi. Agrotrop Journal of Agriculture Science, 2018, 8(1): 1-10. https://doi.org/10.24843/AJoAS.2018.v08.i01.p01
Refbacks
- There are currently no refbacks.