Mechanism of Pacemaker-Induced Left Ventricular Dysfunction: Study Protocol

Sidhi Laksono, Yoga Yuniadi, Amiliana Mardiani Soesanto, Alida Roswita Harahap, Reynaldo Halomoan, Hillary Kusharsamita

Abstract

A permanent pacemaker (PPM) is currently the definitive treatment for patients with a total atrioventricular block (TAVB). The number of pacemaker implantation has been increasing every year. However, PPM implantation increases the risk of developing left ventricular (LV) dysfunction and becoming pacemaker-induced cardiomyopathy (PICM). There has never been a published study on the cellular mechanism of LV dysfunction caused by PPM implantation. The mechanism of pacemaker-induced left ventricular dysfunction (PILVD) study is a multi-center, quasi-experimental, etiognostic study with a time-series design. This etiognostic study aims to investigate the mechanism of cellular level changes in TAVB patients who had PPM implanted. In particular, the difference in serum miR-155 levels and plasma levels of IL-6, sTNFR-2, MMP-9, N-Cad, and ZO-1 in TAVB patients had LV dysfunction caused by right ventricular dysfunction septal PPM implantation measured by global longitudinal strain (GLS) obtained from echocardiography. Blood samples and echocardiographic examinations will be performed on patients who satisfied the inclusion criteria prior to pacemaker implantation, one month after, and three months following pacemaker implantation. The ELISA method will be used to assess IL-6, sTNFR-2, MMP-9, ZO-1, and N-Cad from plasma samples. MiR-155 levels in serum will be determined using the reverse-transcriptase polymerase chain reaction (RT-PCR) technique. The main findings are a decrease in serum miR-155 levels and increased plasma IL-6, sTNFR-2, MMP-9, N-Cad, and ZO-1 levels in TAVB patients who developed LV dysfunction due to right ventricular septal pacemaker implantation measured by GLS at 1 and 3 months.

 

Keywords: atrioventricular block, cardiac pacemaker, cardiomyopathy, global longitudinal strain, mechanism.

 

https://doi.org/10.55463/issn.1674-2974.49.2.18

 


Full Text:

PDF


References


GREENSPON A.J., PATEL J.D., LAU E., OCHOA J.A., FRISCH D.R., HO R.T., PAVRI B.B., and KURTZ S.M. Trends in permanent pacemaker implantation in the United States from 1993 to 2009: increasing complexity of patients and procedures. Journal of the American College of Cardiology, 2012, 60(16): 1540-1545. DOI: 10.1016/j.jacc.2012.07.017

AL-MOHAISSEN M.A., and CHAN K.L. Prevalence and mechanism of tricuspid regurgitation following implantation of endocardial leads for pacemaker or cardioverter-defibrillator. Journal of the American Society of Echocardiography, 2012, 25(3): 245-252. DOI: 10.1016/j.echo.2011.11.020

DREGER H., MAETHNER K., BONDKE H., BAUMANN G., and MELZER C. Pacing-induced cardiomyopathy in patients with right ventricular stimulation for >15 years. Europace, 2012, 14(2): 238-242. DOI: 10.1093/Europace/eur258

BABU N.M.S., SRINATH S.C., LAHIRI A., CHASE D., BOBBY J., and ROSHAN J. Three-dimensional echocardiography with left ventricular strain analyses helps earlier prediction of right ventricular pacing-induced cardiomyopathy. Journal of the Saudi Heart Association, 2018, 30(2): 102-107. DOI: 10.1016/j.jsha.2017.06.001

GIERULA J., CUBBON R.M., JAMIL H.A., BYROM R.J., WALDRON Z.L., PAVITT S., KEARNEY M.T., and WITTE K.K.A. Patients with long-term permanent pacemakers have a high prevalence of left ventricular dysfunction. Journal of Cardiovascular Medicine (Hagerstown), 2015, 16(11): 743-750. DOI: 10.2459/JCM.0000000000000117

KIRK J.A., and KASS D.A. Cellular and Molecular Aspects of Dyssynchrony and Resynchronization. Cardiac Electrophysiology Clinics, 2015, 7(4): 585-597. DOI: 10.1016/j.ccep.2015.08.011

FERRARIO C.M. Cardiac remodelling and RAS inhibition. Therapeutic Advances in Cardiovascular Disease, 2016, 10(3): 162-171. DOI: 10.1177/1753944716642677

SUN Y. Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. Journal of Molecular and Cellular Cardiology, 2010, 48(3): 483-489. DOI: 10.1016/j.yjmcc.2009.08.002

CHAN J.Y., FANG F., ZHANG Q., FUNG J.W.-H., RAZALI O., AZLAN H., LAM K.-H., CHAN H.C.-K., and YU C.-M. Biventricular pacing is superior to right ventricular pacing in bradycardia patients with preserved systolic function: 2-year results of the PACE trial. European Heart Journal, 2011, 32(20): 2533-2540. DOI: 10.1093/eurheartj/ehr336

ZHENG L., XU C.C., CHEN W.D., SHEN W.-L., RUAN C.-C., ZHU L.-M., ZHU D.-L., and GAO P.-J. MicroRNA-155 regulates angiotensin II type 1 receptor expression and phenotypic differentiation in vascular adventitial fibroblasts. Biochemical and Biophysical Research Communications, 2010, 400(4): 483-488. DOI: 10.1016/j.bbrc.2010.08.067

PUTKO B.N., WANG Z., LO J., ANDERSON T., BECHER H., DYCK J.R.B., KASSIRI Z., and OUDIT G.Y. Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in heart failure with preserved ejection fraction relative to heart failure with reduced ejection fraction: evidence for a divergence in pathophysiology. PLOS One, 2014, 9(6): e99495. DOI: 10.1371/journal.pone.0099495

SEGIET O.A., PIECUCH A., MIELAŃCZYK Ł., MICHALSKI M., and NOWALANY-KOZIELSKA E. Role of interleukins in heart failure with reduced ejection fraction. Anatolian Journal of Cardiology, 2019, 22(6): 287. DOI: 10.14744/AnatolJCardiol.2019.32748

PAULUS W.J., and TSCHÖPE C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology, 2013, 62(4): 263-271. DOI: 10.1016/j.jacc.2013.02.092

PAN R., YU K., WEATHERWAX T., ZHENG H., LIU W., and LIU K.J. Blood occludin level as a potential biomarker for early blood-brain barrier damage following ischemic stroke. Scientific Reports, 2017, 7(1): 1-9. DOI: 10.1038/srep40331

VANDYKE K., CHOW A.W., WILLIAMS S.A., TO L.B., and ZANNETTINO A.C.W. Circulating N‐cadherin levels are a negative prognostic indicator in patients with multiple myeloma. British Journal of Haematology, 2013, 161(4): 499-507. DOI: 10.1111/bjh.12280

AHMED F.Z., MOTWANI M., CUNNINGTON C., KWOK C.S., FULLWOOD C., OCEANDY D., FITCHET A., GOODE G.K., LUCKIE M., ZAIDI A.M., KHATTAR R., and MAMAS M.A. One-month global longitudinal strain identifies patients who will develop pacing-induced left ventricular dysfunction over time: the pacing and ventricular dysfunction (PAVD) study. PLOS One, 2017, 12(1): e0162072. DOI: 10.1371/journal.pone.0162072

KAUFMANN D., SZWOCH M., KWIATKOWSKA J., RACZAK G., and DANIŁOWICZ-SZYMANOWICZ L. Global longitudinal strain can predict heart failure exacerbation in stable outpatients with ischemic left ventricular systolic dysfunction. PLOS One, 2019, 14(12): e0225829. DOI: 10.1371/journal.pone.0225829

KARLSEN S., DAHLSLETT T., GRENNE B., SJØLI B., SMISETH O., EDVARDSEN T., and BRUNVAND H. Global longitudinal strain is a more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training. Cardiovascular Ultrasound, 2019, 17(1): 1-2. DOI: 10.1186/s12947-019-0168-9

EPSTEIN A.E., DIMARCO J.P., ELLENBOGEN K.A., ESTES N.A.M. 3RD, FREEDMAN R.A., GETTES L.S., GILLINOV A.M., GREGORATOS G., HAMMILL S.C., HAYES D.L., HLATKY M.A., NEWBY L.K., PAGE R.L., SCHOENFELD M.H., SILKA M.J., STEVENSON L.W., SWEENEY M.O., TRACY C.M., DARBAR D., DIMARCO J.P., DUNBAR S.B., ESTES N.A.M. 3RD, FERGUSON T.B.J., HAMMILL S.C., KARASIK P.E., LINK M.S., MARINE J.E., SCHOENFELD M.H., SHANKER A.J., SILKA M.J., STEVENSON L.W., STEVENSON W.G., and VAROSY P.D. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Journal of the American College of Cardiology, 61(3): e6-75. DOI: 10.1016/j.jacc.2012.11.007

BARONAITĖ-DŪDONIENĖ K., VAŠKELYTĖ J., PUODŽIUKYNAS A., ZABIELA V., KAZAKEVIČIUS T., and ŠAKALYTĖ G. Evaluation of left ventricular longitudinal function and synchrony after dual-chamber pacemaker implantation. Medicine (Kaunas), 2014, 50(6): 340-344. DOI: 10.1016/j.medici.2014.11.010

CANO O., OSCA J., SANCHO-TELLO M.J., SÁNCHEZ J.M., ORTIZ V., CASTRO J.E., SALVADOR A., and OLAGÜE J. Comparison of effectiveness of right ventricular septal pacing versus right ventricular apical pacing. The American Journal of Cardiology, 2010, 105(10): 1426-1432. DOI: 10.1016/j.amjcard.2010.01.004

NEHME A., ZOUEIN F.A., ZAYERI Z.D., and ZIBARA K. An update on the tissue renin angiotensin system and its role in physiology and pathology. Journal of Cardiovascular Development and Disease, 2019, 6(2): 14. DOI: 10.3390/jcdd6020014

BARTEL D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297. DOI: 10.1016/s0092-8674(04)00045-5.

FONTES J.A., ROSE N.R., and CIHAKOVA D. The varying faces of IL-6: From cardiac protection to cardiac failure. Cytokine, 2015, 74(1): 62-68. DOI: 10.1016/j.cyto.2014.12.024

YAN A.T., YAN R.T., CUSHMAN M., REDHEUIL A., TRACY R.P., ARNETT D.K., ROSEN B.D., MCCLELLAND R.L., BLUEMKE D.A., and LIMA J.A.C. Relationship of interleukin-6 with regional and global left-ventricular function in asymptomatic individuals without clinical cardiovascular disease: insight from the multi-ethnic study of atherosclerosis. European Heart Journal, 2010, 31(7): 875-882. DOI: 10.1093/eurheartj/ehp454

BRADHAM W.S., MOE G., WENDT K.A., SCOTT A.A., KONIG A., ROMANOVA M., NAIK G., and SPINALE F.G. TNF-alpha and myocardial matrix metalloproteinases in heart failure: relationship to LV remodeling. American Journal of Physiology-Heart and Circulatory Physiology, 2002, 282(4): 1288-1295. DOI: 10.1152/ajpheart.00526.2001

KOSTIN S. Zonula occludens-1 and connexin 43 expression in the failing human heart. Journal of Cellular and Molecular Medicine, 2007, 11(4): 892-895. DOI: 10.1111/j.1582-4934.2007.00063.x.

DEJANA E., ORSENIGO F., and LAMPUGNANI M.G. The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 2008, 121(13): 2115-2122. DOI: 10.1242/jcs.017897.

MEHTA D., and MALIK A.B. Signaling mechanisms regulating endothelial permeability. Physiological Reviews, 2006, 86(1): 279-367.

YANG Y., ZHOU Y., CAO Z., TONG X.Z., XIE H.Q., LUO T., HUA X.P., and WANG H.Q. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy. Experimental and Therapeutic Medicine, 2016, 12(3): 1556-1562.

ZAMILPA R., IBARRA J., DE CASTRO BRÁS L.E., RAMIREZ T.A., NGUYEN N., HALADE G.V., ZHANG J., DAI Q., DAYAH T., CHIAO Y.A., LOWELL W., AHUJA S.S., D'ARMIENTO J., JIN Y.-F., and LINDSEY M.L. Transgenic Overexpression of Matrix Metalloproteinase-9 in Macrophages Attenuates the Inflammatory Response and Improves Left Ventricular Function Post-Myocardial Infarction. Journal of Molecular and Cellular Cardiology, 2012, 53(5): 599-608.

ORAL H., SIVASUBRAMANIAN N., DYKE D.B., MEHTA R.H., MGROSSMAN P.M., BRIESMIESTER K., FAY W.P., PAGANI F.D., BOLLING S.F., MANN D.L.. and STARLING M.R. Myocardial pro-inflammatory cytokine expression and left ventricular remodeling in patients with chronic mitral regurgitation. Circulation, 2003, 107(6): 831-837.

SIWIK D.A., CHANG D.L.F., and COLUCCI W.S. Interleukin-1 β and tumor necrosis factor-α decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circulation Research, 2000, 86(12): 1259-1265.

TOBA H., CANNON P.L., YABLUCHANSKIY A., IYER R.P., D'ARMIENTO J., and LINDSEY M.L. Transgenic overexpression of macrophage matrix metalloproteinase-9 exacerbates age-related cardiac hypertrophy, vessel rarefaction, inflammation, and fibrosis. American Journal of Physiology-Heart and Circulatory Physiology, 2017, 312(3): 375-383.

DUNCAN S.E., GAO S., SARHENE M., COFFIE J.W., LINHUA D., BAO X., JING Z., LI S., GUO R., SU J., and FAN G. Macrophage Activities in Myocardial Infarction and Heart Failure. Cardiology Research and Practice, 2020, 2020: 1-16.

MESCHIARI C.A., JUNG M., IYER R.P., YABLUCHANSKIY A., TOBA H., GARRET M.R., and LINDSEY M.L. Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing after myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology, 2018, 314(2): 224-235.

BHAT A.A., UPPADA S., ACHKAR I.W., HASHEM S., YADAV S.K., SHANMUGAKONAR M., AL-NAEMI H.A., HARIS M., and UDDIN S. Tight junction proteins and signaling pathways in cancer and inflammation: A functional crosstalk. Frontiers in Physiology, 2019, 10: 1-19.

KRIK J.A., and KASS D.A. Cellular and molecular aspects of dyssynchrony and resynchronization. Cardiac Electrophysiology Clinics, 2015, 7(4): 585-597.

KAUFMAN B.D., SHADDY R.E., SHIRALI G.S., TANEL R., and TOWBIN J.A. Assessment and management of the failing heart in children. Cardiology in the Young, 2008, 18(3): 63-71.

LIU P., SUN M., and SADER S. Matrix metalloproteinases in cardiovascular disease. Canadian Journal of Cardiology, 2006, 22(Suppl. B): 25-30.

SARAON T., and KATZ S.D. Reverse remodelling in systolic heart failure. Cardiology in Review, 2015, 23(4): 173-181.


Refbacks

  • There are currently no refbacks.