Chemical Compounds Profile by LC-MS/MS and Assessment of Antioxidant and Antibacterial properties of Caesalpinia pubescens Fruits Extracts
Abstract
This study presents the profile of chemical compounds by LC-MS/MS and evaluates antioxidant and antibacterial properties of Caesalpinia pubescens fruits extracts. The study aimed to evaluate the antioxidant activity and antibacterial activity of Caesalpinia pubescens fruits extract and determine the active extract's chemical compounds by LCMS/MS. Total phenolic content (TPC) and total flavonoids content (TFC) were determined by the colorimetric assay, respectively. The antioxidant activity was performed by TLC-bioautography, determination of the IC50, antioxidant activity index (AAI), and the inhibition of β-carotene bleaching. This study also determined the correlation between TPC, TFC, and antioxidant activities. Evaluation of antibacterial activity was performed against S. aureus and E. coli. The results showed that the highest TPC was obtained in methanol extract (108.54 ± 1.92 mg GAE/g extract), and the highest TFC was obtained in dichloromethane extract (33.38 ± 0.86 mg QE/g extract). Methanol and ethyl extracts have powerful DPPH free radical scavenging with the IC50 value range of 8.27 - 11.24 µg/ml and AAI values of 2.74 - 3.72. The DPPH radical free scavenging capacity has a high positive correlation with the TPC values with an r-value of 0.950. The increased concentration of extracts correlated with the increased inhibition of β-carotene bleaching, with Pearson’s coefficient (r) in a range of 0.624 - 0.962. The 1000 ppm of methanol extract had the best antioxidant activity, significantly different from positive control and other extracts (P<0.05). The dichloromethane and methanol extracts possess moderate antibacterials against S. aureus with a MIC value of 256 µg/mL. This study is the new on the antibacterial and antioxidant activity of C. pusbescens fruit extracts, and the first study regarding flavonoid and phenolic contents and the other chemical composition in the C. pusbescens fruit extracts.
Keywords: Caesalpinia pubescens, fruits, antioxidant activity index, antibacterial, LC-MS/MS.
https://doi.org/10.55463/issn.1674-2974.49.2.15
Full Text:
PDFReferences
BOY H. I. A., RUTILLA A. J. H., SANTOS K. A., TY A. M. T., YU A. I., MAHBOOB T., TANGPOONG J., and NISSAPATORN V. Recommended Medicinal Plants as Source of Natural Products: A Review. Digital Chinese Medicine, 2018, 1(2): 131-142. https://doi.org/10.1016/S2589-3777(19)30018-7
MSOMI N. Z., & IMELANE M. B. C. Herbal Medicine. In: BUILDERS P. F (Ed.) Herbal Medicine. IntechOpen, Lomdon, 2018. https://doi.org/10.5772/intechopen.72816
ZANIN J. L. B., DE CARVALHO B. A., MARTINELI P. S., DOS SANTOS M. H., LAGO J. H. G., SARTORELLI P., VIEGAS C. J., and SOARES M. G. The genus Caesalpinia L. (Caesalpiniaceae): phytochemical and pharmacological characteristics. Molecules, 2012, 17(7): 7887–902. https://doi.org/10.3390/molecules17077887
DAS B., THIRUPATHI P., RAVIKANTH B., KUMAR R. A., SARMA A. V. S., and BASHA S. J. Isolation, synthesis, and bioactivity of homoisoflavonoids from Caesalpinia pulcherrima. Chemical and Pharmaceutical Bulletin, 2009, 57(10): 1139–1141. https://doi.org/10.1248/cpb.57.1139
RAO V. M., DAMU G. L. V., SUDHAKAR D., SIDDAIAH V., and RAO C. V. New efficient synthesis and bioactivity of homoisoflavonoids. Arkivoc, 2008, 11: 285-294. http://dx.doi.org/10.3998/ark.5550190.0009.b28
SAEED M. A., & SABIR A. W. Antibacterial activity of Caesalpinia bonducella seeds. Fitoterapia, 2001, 72(7): 807–809. https://doi.org/10.1016/s0367-326x(01)00292-1
SHUKLA S., MEHTA A., JOHN J., SINGH S., MEHTA P., and VYAS S. P. Antioxidant activity and total phenolic content of ethanolic extract of Caesalpinia bonducella seeds. Food and Chemical Toxicology, 2009, 47(8): 1848–1851. https://doi.org/10.1016/j.fct.2009.04.040
THE PLANT LIST. A Working List of All Plant Species. 2013. www.theplantlist.org
FLORA OF GREECE. Vascular Plants Checklist of Greece. 2020. www.portal.cybertaxonomy.org
DADUS A. Private Communication, 2017.
PRAPTIWI, FATHONI A., and ILYAS M. Diversity of endophytic fungi from Vernonia amygdalina, their phenolic and flavonoid contents and bioactivities. Biodiversitas, 2020, 21(2): 436–441. https://doi.org/10.13057/biodiv/d210202
MUNTEANU IG, and APETREI C. Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 2021, 22(7), 3380. https://doi.org/10.3390/ijms22073380
ARYAL S., BANIYA M. K., DANEKHU K., KUNWAR P., GURUNG R., and KOIRALA N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants, 2019, 8(4): 96. https://doi.org/10.3390/plants8040096
BAKAR M. F. A., MOHAMED M., RAHMAT A. B., and FRY J. R. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chemistry, 2009, 113: 479–483. https://doi.org/10.1016/ j.foodchem.2008.07.081
PAI T., SAWANT S. Y., GHATAK A., CHATURVEDI P., GUPTE A., and DESAI N. S. Characterization of Indian beers: chemical composition and antioxidant potential. Journal Food Science and Technology, 2013, 52: 1414–1423. https://doi.org/10.1007/s13197-013-1152-2
CHEN S., JIANG H., WU X., and FANG J. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediators of Inflammation, 2016, 2016: 9340637. https://doi.org/10.1155/2016/9340637
TAMOKOU J. D., SIMO MPETGA D. J., KEILAH LUNGA P., TENE M., TANE P., and KUIATE J. R. Antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds from stem bark of Albizia adianthifolia (Mimosoideae). BioMedCentral Complementary Medicine and Therapies, 2012, 12(1): 99. https://doi.org/10.1186/1472-6882-12-99
HUANG R. C., OKAMURA H., IWAGAWA T., TADERA K., and NAKATANI N. Azedarachin C. a limonoid antifeedant from Melia azedarach. Phytochemistry, 1995, 38(3): 593-594. http://dx.doi.org/10.1016/0031-9422(94)00707-Z
DAVID A. V. A., ARULMOLI R., and PARASURAMAN S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacognosy Reviews, 2016, 10(20): 84–89. https://doi.org/10.4103/0973-7847.194044
HABTEMARIAM S. A-glucosidase inhibitory activity of kaempferol-3-O-rutinoside. Natural Product Communications, 2011, 6(2): 201–203. https://doi.org/10.1177%2F1934578X1100600211
LI S., PENG F., XIAO Y., GONG Q., BAO Z., LI Y., and WU X. Mechanisms of High Concentration Valine-Mediated Inhibition of Peach Tree Shoot Growth. Frontiers in Plant Science, 2020, 11. https://doi.org/10.3389/fpls.2020.603067
MOREIRA L., SILVA G., CÂMARA D., PÁDUA R., LEMOS V., BRAGA F., and CORTES S. The Cyclitol L-(+)-Bornesitol as an Active Marker for the Cardiovascular Activity of the Brazilian Medicinal Plant Hancornia specios. Biological and Pharmaceutical Bulletin, 2019, 42(12): 2076–2082. https://doi.org/10.1248/bpb.b19-00601
TOMAZI R., FIGUEIRA Â. C., FERREIRA A. M., FERREIRA D. Q., DE SOUZA G. C., DE SOUZA PINHEIRO W. B., PINHEIRO NETO J. R., DA SILVA G. A., DE LIMA H. B., and DA SILVA HAGE-MELIM L. I. Hypoglycemic Activity of Aqueous Extract of Latex from Hancornia speciosa Gomes: A Study in Zebrafish and In Silico. Pharm, 2021, 14(9): 856. https://doi.org/10.3390/ph14090856
DO NASCIMENTO J. E. T., RODRIGUES A. L. M., DE LISBOA D. S., LIBERATO H. R., FALCÃO M. J. C., DA SILVA C. R., NOBRE JÚNIOR H. V., BRAZ FILHO R., DE PAULA JUNIOR V. F., ALVES D. R., and DE MORAIS S. M. Chemical Composition and Antifungal In Vitro and In Silico, Antioxidant, and Anticholinesterase Activities of Extracts and Constituents of Ouratea fieldingiana (DC.) Baill. Evidence-Based Complementary and Alternative Medicine, 2018, 2018: 1748487. https://doi.org/10.1155/2018/1748487
SUBKO K., WANG X., NIELSEN F. H., ISBRANDT T., GOTFRESDSEN C. H., RAMOS M. C., MACKENZIE T., VICENTE F., GENILLOUD O., FRISVAD J. C., and LARSEN T. O. Mass Spectrometry Guided Discovery and Design of Novel Asperphenamate Analogs From Penicillium astrolabium Reveals an Extraordinary NRPS Flexibility. Frontiers in Microbiology, 2021, 11; 618730. https://doi.org/10.3389/fmicb.2020.618730
YAZID F., HASANAH N. B., ROSMALENA, HANAFI M., and PRASASTY V. D. Antidiabetic and antioxidant potential of Vernonia amygdalina leaf extract in alloxan-induced Sprague-Dawley rats. Online Journal of Biological Sciences, 2020, 20(4): 190-200. https://doi.org/10.3844/ojbsci.2020.190.200
ZHANG X., WU Y., LI Z., WANG W., WU Y., PAN D., GU Z., SHENG R., TOMÁS T., ZHANG H., RODRIGUES J., GONG Q., and LUO K. Glycodendron/pyropheophorbide-a (Ppa)-functionalized hyaluronic acid as a nanosystem for tumor photodynamic therapy. Carbohydrate Polymers, 2020, 247: 116749. https://doi.org/10.1016/j.carbpol.2020.116749
APPIAH T., AGYARE C., LUO Y., BOAMAH V. E., and BOKAYE Y. D. Antimicrobial and Resistance Modifying Activities of Cerevisterol Isolated from Trametes Species. Current Bioactive Compounds, 2020, 16(2): 115-123. https://doi.org/10.2174/1573407214666180813101146
SINAGA N. I., HANAFI M., and YANTIH N. Identification of chemical compounds and antibacterial activity of 96% ethanol extract from moringa oleifera lam. Leaves against MRSA (methicillin resistant staphylococcus aureus). International Journal Applied Pharmaceutics, 2021, 13(SI2): 111-114. https://doi.org/10.22159/ijap.2021.v13s2.21
SEDKY N. K., EL GAMMAL Z. H., WAHBA A. E., MOSAD E., WALY Z. Y., EL-FALLAL A. A., ARAFA R. K., and EL-BADRI N. The molecular basis of cytotoxicity of α-spinasterol from Ganoderma resinaceum: Induction of apoptosis and overexpression of p53 in breast and ovarian cancer cell lines. Journal of Cellular Biochemistry, 2018, 119(5): 3892–3902. https://doi.org/10.1002/jcb.26515
Refbacks
- There are currently no refbacks.