Study of Co1 and BIK BCL2 Gene Analysis in Gorontalo Local Chicken

Alfi Sophian, Abinawanto


Analysis studies of Co1 and BIK BCL2 genes in local Gorontalo chickens were carried out using real-time PCR. This study aims to detect the presence of Co1 and BIK BCL2 genes in local Gorontalo chickens so that they can be used as information on gene diversity that can be used as genetic markers to study the diversity of local chicken species in Indonesia. The method used in this study is the SYBR green real-time PCR method. The research conducted found that the concentration values of the extracted samples were in the range of 68.15-68.30 ng/µL. Meanwhile, the purity values measured at wavelength A260/A280 were obtained with purity ranges between 1.867-1.923. The amplification results of the Co1 target gene show that the Ct value is in the range of 20.90-21.20, while for Tm, it is 84.10-84.20. In the BIK BCL2 target gene analysis, the Ct value was in the range of 16.15-16.20, while for Tm, it was 91.10-91.20. From these results, it can be concluded that all research samples were sampled from six different regions detected with CT and Tm values from the real-time analysis carried out obtained homogeneous values and no more than 2 degrees of difference between samples. The research novelty was using Nisi chicken as the native, one of the local chickens in Indonesia as the object of study. Besides, we used a BIK BCL 2 gene as the marker to determine the genetic diversity of the local chicken. A suggestion for further research is to explore more diverse genes to obtain more data on genetic diversity.


Keywords: chicken, Co1, BIK BCL2, PCR.


Full Text:



SOPHIAN A., ABINAWANTO, NISA U.C., and FADHILLAH. Morphometric analysis of Gorontalo (Indonesia) native chickens from six different regions. Biodiversitas, 2021, 22(4): 1757-1763. DOI: 10.13057/bio div/d220420.

CUI H., IBTISHAM F., XU C., HUANG H., and SU Y. DNA barcoding of Chinese native chicken breeds through COI gene. Thai Journal of Veterinary Medicine, 2017, 47(1): 123-129.

OKUMU O.N., NGERANWA J., BINEPAL Y., KAHI A., BRAMWEL W.W., ATEYA L.O., and WEKESA F. Genetic diversity of indigenous chickens from selected areas in Kenya using microsatellite markers. Journal of Genetic Engineering & Biotechnology, 2017, 15(2): 489-495. DOI: 10.1016/j.jgeb.2017.04.007.

PENG W., YANG H., CAI K., ZHOU L., TAN Z., and WU K. Molecular identification of the Danzhou chicken breed in China using DNA barcoding. Mitochondrial DNA Part B Resources, 2019, 4(2): 2459-2463. DOI: 10.1080/23802359.2019.1638321.

ROH H.J., KIM S.-C., CHO C.-Y., LEE J., JEON D., KIM D.-K., KIM K.-W., AFRIN F., KO Y.-G., LEE J.-H., BATSAIKHAN S., SUSANTI T., HEGAY S., KONGVONGXAY S., AMATYA N. GORKHALI, THI L.A.N., THAO T.T.T., and MANIKKU L. Estimating genetic diversity and population structure of 22 chicken breeds in Asia using microsatellite markers. Asian-Australasian Journal of Animal Sciences, 2020, 33(12): 1896-1904. DOI: 10.5713/ajas.19.0958.

NXUMALO N., CECCOBELLI S., CARDINALI I., LANCIONI H., LASAGNA E., and KUNENE N.W. Genetic diversity, population structure and ancestral origin of KwaZulu-Natal native chicken ecotypes using microsatellite and mitochondrial DNA markers. Italian Journal of Animal Science, 2020, 19(1): 1277-1290. DOI: 10.1080/1828051X.2020.1838350.

KARP-TATHAM E., KÜSTER T., ANGELOU A., PAPADOPOULOS E., NISBET A.J., XIA D., TOMLEY F.M., and BLAKE D.P. Phylogenetic Inference Using Cytochrome C Oxidase Subunit I (COI) in the Poultry Red Mite, Dermanyssus gallinae in the United Kingdom Relative to a European Framework. Frontiers in Veterinary Science, 2020, 7(8): 1-13. DOI: 10.3389/fvets.2020.00553.

DAVE A.R., CHAUDHARY D.F., P.M.MANKAD, KORINGA P.G., and RANK D.N. Genetic diversity among two native Indian chicken populations using cytochrome c oxidase subunit I and cytochrome b DNA barcodes. Veterinary World, 2021, 14(5): 1389-1397. DOI: 10.14202/vetworld.2021.1389-1397.

MALOMANE D.K., WEIGEND S., SCHMITT A.O., WEIGEND A., REIMER C., and SIMIANER H. Genetic diversity in global chicken breeds in relation to their genetic distances to wild populations. Genetics Selection Evolution, 2021, 53(1): 1-11. DOI: 10.1186/s12711-021-00628-z.

SABRY A., MOHAMED A.A., and HASSEN M. Genetic Diversity of Indigenous Chicken (Gallus Gallus domesticus) from Ecozones of Egypt and Kingdom of Saudi Arabia. Open Journal of Applied Sciences, 2021, 11(06): 775-787. DOI: 10.4236/ojapps.2021.116057.

ABINAWANTO, SOPHIAN A., LESTARI R., BOWOLAKSONO A., EFENDI P.S., and AFNAN R. Analysis of IGF-1 gene in Ayam ketawa (Gallus gallus domesticus) with dangdut and slow type vocal characteristics. Biodiversitas, 2019, 20(7): 2004-2010. DOI: 10.13057/bio div/d200729.

CONG F., ZHU Y., WANG J., LIAN Y., LIU X., XIAO L., HUANG R., ZHANG Y., CHEN M., and GUO P. A multiplex xTAG assay for the simultaneous detection of five chicken immunosuppressive viruses 11 Medical and Health Sciences 1108 Medical Microbiology 06 Biological Sciences 0605 Microbiology. BMC Veterinary Research, 2018, 14(1): 1-8. DOI: 10.1186/s12917-018-1663-1.

BOO S.Y., TAN S.W., ALITHEEN N.B., C.L. HO, OMAR A.R., and YEAP S.K. Identification of Reference Genes in Chicken Intraepithelial Lymphocyte Natural Killer Cells Infected with Very-virulent Infectious Bursal Disease Virus. Scientific Reports, 2020, 10(1): 1-9. DOI: 10.1038/s41598-020-65474-3.

XIANG Y., LI L., LIU P., YAN L., JIANG Z., YU Y., LI Y., CHEN X., and CAO W. Rapid detection of avian leukosis virus subgroup J by cross-priming amplification. Scientific Reports, 2021, 11: Article number: 10946. DOI: 10.1038/s41598-021-90479-x.

LI Q., ZHANG Y., MENG F., JIANG H., XU G., DING J., ZHANG Y., DONG G., TIAN S., CHANG S., and ZHAO P. A New Strategy for the Detection of Chicken Infectious Anemia Virus Contamination in Attenuated Live Vaccine by Droplet Digital PCR. BioMed Research International, 2019: 2750472. DOI: 10.1155/2019/2750472.

KUCHIPUDI S.V., YON M., NAIR M.S., BYUKUSENGE M., BARRY R.M., NISSLY R.H., WILLIAMS J., PIERRE T., MATHEWS T., WALNER-PENDLETON E., DUNN P., BARNHART D., LOUGHREY S., DAVISON S., KELLY D.J., TEWARI D., and JAYARAO B.M. A Highly Sensitive and Specific Probe-Based Real-Time PCR for the Detection of Avibacterium paragallinarum in Clinical Samples From Poultry. Frontiers in Veterinary Science, 2021, 8(4). DOI: 10.3389/fvets.2021.609126.

DOLCH K., ANDRÉE S., and SCHAWAGELE F. Comparison of Real-Time PCR Quantification Meat Products. Foods, 2020, 9(1049): 3-15.

ABINAWANTO A., and EFFENDI P.S. The bioacoustics analysis and the morphometric study of the gaga's chicken (Ayam Ketawa) from Pinrang and Kebayoran Lama. AIP Conference Proceedings, 2018, 2023(1). DOI: 10.1063/1.5064134.

ABINAWANTO, SOPHIAN A., EFFENDI P., and SISWANTINING T. Short communication: Variation in vocal cord morphometric characters among dangdut type and the slow type gaga chicken. Biodiversitas, 2018, 19(5): 1902-1905. DOI: 10.13057/bio div/d190542.

ARLINA F., RUSFIDRA, ANDRIANO D., and SUMATRI C. Short communication: The type and sound diversity of kukuak balenggek chicken (gallus gallus domesticus) reared in West Sumatra, Indonesia. Biodiversitas, 2020, 21(5): 1914-1919. DOI: 10.13057/bio div/d210518.

MUSTOFA F., FATHONI A., SARI A.P.Z.N.L., SASONGKO H., and MAHARANI D. Bodyweight and body size measurement of five Indonesian local chicken. IOP Conference Series: Earth and Environmental Science, 2021, 788(1). DOI: 10.1088/1755-1315/788/1/012016.

BUGIWATI S.R.A., DAGONG M.I.A., and TOKUNAGA T. Crowing characteristics of native singing chicken breeds in Indonesia. IOP Conference Series: Earth and Environmental Science, 2020, 492(1). DOI: 10.1088/1755-1315/492/1/012100.

DARYONO B.S., MUSHLIH M., and PERDAMAIAN A.B.I. Crowing sound and inbreeding coefficient analysis of Pelung chicken (Gallus Gallus domesticus). Biodiversitas, 2021, 22(5): 2451-2457. DOI: 10.13057/bio div/d220501.

ABINAWANTO, ZULISTIANA T., LESTARI R., DWIRANTI A., and BOWOLAKSONO A. The genetic diversity of ayam ketawa (Gallus gallus domesticus, Linneaus, 1758) in bangkalan district, madura island, indonesia. Biodiversitas, 2021, 22(6): 3145-3155. DOI: 10.13057/biodiv/d220617.

GHANI U., ALI Y., GUL K., ULLAH R., KHAN A., and WEI D.-Q. In-silico analysis of BCL2 gene using multiple bioinformatics tools to identify the most lethal mutations that are crucial for its structural and functional integrity. 2021: 1-12 [Online]. Available from:

DAI Y., JIN S., LI X., and WANG D. The involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin-resistant epithelial ovarian cancer. Oncotarget, 2017, 8(1): 1354-1368. DOI: 10.18632/oncotarget.13817.

DELBRIDGE A.R.D., GRABOW S., STRASSER A., and VAUX D.L. Thirty years of BCL-2: Translating cell death discoveries into novel cancer therapies. Nature Reviews Cancer, 2016, 16(2): 99-109. DOI: 10.1038/nrc.2015.17..

SOPHIAN A., PURWANINGSIH R., MUINDAR, IGIRISA E., and AMIRULLAH M. Short Communication: Analysis of purity and concentration of DNA extracted from intron patho gene-spin extraction on crab processed food product samples. Asian Journal of Tropical Biotechnology, 2021, 18(1). DOI: 10.13057/biotek/c180103.

SOPHIAN A. Short Communication: Analysis of purity and concentration of extracted DNA on salted fish processed food products. Asian Journal of Natural Product Biochemistry, 2021, 19(1): 21-24. DOI: 10.13057/biofar/f190104.


  • There are currently no refbacks.