Estimating Crustacean Species Utilize Segara Anakan Estuary Cilacap, Indonesia as Nursery Ground through DNA Barcoding

Elly Tuti Winarni, Kusbiyanto, Agus Nuryanto

Abstract

Estimating crustaceans that utilized Segara Anakan Cilacap, Central Java, Indonesia, is constrained by larvae identification difficulties because of the lack of identification key and limited morphological characteristics of the larva. Species-level identification of crustacean larvae can be conducted using DNA barcoding using cytochrome c oxidase 1 (COI). This study aimed to disentangle crustacean larvae diversity in the central areas of Segara Anakan Cilacap, Central Java, Indonesia. The COI gene was processed in Genetika Science Indonesia and 1st BASE Asia Malaysia for species barcoding. The sequences were edited and aligned manually in the bio edit package. Homology and sequence divergences were obtained for similarity tests using a basic local alignment search tool to the reference sequences in the database. The genetic threshold for species delineation was 5% divergence or 95% homology. We reconstructed the phylogenetic tree by applying maximum likelihood and neighbor-joining algorithms based Kimura 2-parameter substitution model in the MEGAX software. Eleven crustacean larvae were successfully barcoded and delineated into eleven species. Eight of eleven morphotypes were convincingly identified at a species level due to low divergence from the reference species. The three remaining morphotypes could be assigned only to the genus level because of high genetic divergence. Their monophyly determined their morphotypes' assignment to specified taxa in the phylogenetic tree.  The COI gene is a good marker for species delineation of crustacean larvae. Eleven freshwater, brackish water, and marine water crustacean use central areas of the Segara Anakan estuary as a nursery ground. This study is the first report about crustacean larvae diversity in the central regions of Segara Anakan Cilacap, Central Java, Indonesia. The data implied that Segara Anakan is an essential source of recruit for the surrounding ecosystem and a high priority for conservation.

 

Keywords: barcoding, homology, larvae, nursery, threshold.


Full Text:

PDF


References


MULYADI, and MURNIATI D.C. Diversity, Abundance, and Distribution of Copepods (Crustacea) in the Mangrove Area of Segara Anakan, Cilacap. Oseanologi dan Limnilogi di Indonesia, 2017, 2(2): 21-31.

REDJEKI S., ARIF M., HARTATI R., and PINANDITA L.K. Density and distribution of Crab (Brachyura) in the mangrove forest ecosystem of Segara Anakan Cilacap. Jurnal Kelautan Tropis, 2017, 20(2): 131-139.

PRATIWI R., and SUKARDJO S. Effects of rainfall on the population of shrimps Penaeus monodon Fabricius in Segara Anakan lagoon, Central Java, Indonesia. Biotropia, 2018, 25(3): 156-169.

WAGIO K., DAMORA A. Biological aspects, population dynamics, and stock density of banana prawns (Penaeus merguiensis de Man, 1888) in the nursery habitat of Segara Anakan estuaries, Cilacap. Jurnal Penelitian Perikanan Indonesia, 2018, 4(2): 127-136.

WIDIANINGSIH W., NURAINI R.A.T., HARTATI T., and REDJEKI S. Morphometry and growth of Scylla serrata (Phylum: Arthropoda, Family: Portunidae) in Penikel Village, Segara Anakan, Cilacap. Jurnal Kelautan Tropis, 2019, 22(1): 57-62.

NURYANTO A., PRAMONO H., and SASTRANEGARA M.H. Molecular identification of fish larvae from east plawangan of Segara Anakan, Cilacap, Central Java, Indonesia. Biosaintifika, 2017, 9 (1): 33-40.

KUSBIYANTO, BHAGAWATI D., and NURYANTO A. DNA barcoding of crustacean larvae in Segara Anakan, Cilacap, Central Java, Indonesia using cytochrome c oxidase gene. Biodiversitas, 2020, 21(10): 4878-4887.

YUNIARTI, IHSAN Y.N., and ASDAK C. Impact sedimentation to community structure macrozoobenthos in Segara Anakan lagoon. Journal of Fundamental and Applied Sciences, 208, 10(1S): 565-579.

RIMADIYANI W., KRISANTI M., and SULISTIONO. Macrozoobenthos community structure in the Western Segara Anakan Lagoon, Central Java, Indonesia. Biodiversitas, 2019, 20(6): 1588-1596.

REDJEKI S., HARTATI R., ENDRAWATI H., WIDIANINGSIH W., NURAINI R.A.T., RINIATSIH I., AGUS E.L., and MAHENDRAJAYA R.T. Growth pattern and condition factor of mangrove crab (Scylla tranquebarica) in Segara Anakan Cilacap Regency. Proceeding of the 3rd International Symposium on Marine and Fisheries Research. European Sensory Science Society Web of Conferences, 2020, 147: 02005.

WALCZYNSKA K.S., SOREIDE J.E., WEYDMANN-ZWOLICKA A., RONOWICZ M., and GABRIELSEN T.M. DNA barcoding of Cirripedia larvae reveals new knowledge on their biology in Arctic coastal ecosystems. Hydrobiologia, 2019, 837: 149-159.

HAUG C., AHYONG S.T., WIETHASE J.H., OLESEN J., and HAUG J.T. Extreme morphologies of mantis shrimp larvae. Nauplius, 2016, 24: e2016020.

MUZIO G.D., SARTOR R.M., NURRA N., BATTUELLO M., PESSANI D., CERVELLA P., and CUESTA J.A. Morphology of planktonic zoeal stages of Palicus caronii (Decapoda, Brachyura), identified by DNA barcoding, provides novelties to Palicoidea larval systematics. Scientific Reports, 2019, 9: 19132.

CARRETON M., COMPANY J.B., PLANELLA L., and HERAS S. Morphological identification and molecular confirmation of the deep-sea blue and red shrimp Aristeus antennatus larvae. PeerJ, 2019, 7: e6063.

BARTILOTTI C., SALABERT J., and SANTOS A.D. Complete larval development of Thor amboinensis (De Man, 1888) (Decapoda: Thoridae) described from laboratory-reared material and identified by DNA barcoding. Zootaxa, 2016, 4066 (4): 399-420.

BEKKER E.I., KARABANOV D.P., GALIMOV Y.R., and KOTOV A.A. DNA barcoding reveals high cryptic diversity in the North Eurasian Moina species (Crustacea: Cladocera) PLoS ONE, 2016, 11(8): e0161737.

WAKABAYASHI K., YANG C.-H., SHY J.-Y., HE C.-H., and CHAN T.-Y. Correct identification and redescription of the larval stages and early juveniles of the slipper lobster Eduarctus martensii (Pfeffer, 1881) (Decapoda: Scyllaridae). Journal of Crustacean Biology, 2017, 37(2): 204-219.

RAHMAN A.U., KUMAR C.P., MOHANCHANDER P., and MANIKANTAN G. Identification of eggs, larva and adults of Scylla serrata (forsskål, 1775) using DNA barcodes. Journal of Aquatic Biology and Fisheries, 2019, 7: 24-30.

PALECANDA S., FELLER K.D., and PORTER M.L. Using larval barcoding to estimate stomatopod species richness at Lizard Island, Australia for conservation monitoring. Scientific Reports, 2020, 10: 10990. DOI: 10.1038/s41598020-67696-x.

VARELA C., and BRACKEN-GRISSOM H. A mysterious world revealed: larval-adult matching of deep-sea shrimps from the Gulf of Mexico. Diversity, 2021, 13: 457.

SASTRANEGARA M.H., WIDYARTINI D.D., FITRIANA I., and RANI K.M. The plankton composition from the lagoon to the marine entrance at the west part of Segara Anakan mangrove ecosystem in Cilacap. IOP Conference Series: Earth and Environmental Science, 2020, 550: 012021.

REDJEKI S., HARTATI R., NURAENI R.A.T., and RINIATSIH I. Co-existence between Scylla serrata and Scylla tranquebarica in the lagoon of Segara Anakan, Cilacap, Indonesia. IOP Conference Series: Earth and Environmental Science, 2020, 530: 012043.

WALSH P.S., METZGER D.A., and HIGUCHI R. Chelex-100 as a medium for simple extraction of DNA for PCR based typing from forensic material. Biotechniques, 1991, 10(4): 506-13.

FOLMER O., BLACK M., HOEH W., LUTZ R., and VRIJENHOEK R. DNA Primers for amplification of mitochondrial cytochrome c oxidase subunit I from metazoan invertebrates. Molecular Marine Biology and Biotechnology, 1994, 3(5): 294-299.

HALL T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 2005, 41: 95-98.

KUMAR S., STECHER G., LI M., and KNYAZ C. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.

BRANDO M.C., FREIRE A.S., and BURTON R.S. Estimating diversity of crabs (Decapoda: Brachyura) in a no-take marine protected area of the SW Atlantic coast through DNA barcoding of larvae. Systematics and Biodiversity, 2016: 1-15.

AGUILAR A., MAEDA-MARTINEZ A.M., MURUGAN G., OBREGÓN-BARBOZA H., ROGERS D.C., MCCLINTOCK K., KRUMM J.L. High intraspecific genetic divergence in the versatile fairy shrimp Branchinecta lindahli with a comment on cryptic species in the genus Branchinecta (Crustacea: Anostraca). Hydrobiology, 2017, 801: 59-69.

LANDSCHOFF J., and GOUWS G. DNA barcoding as a tool to facilitate the taxonomy of hermit crabs (Decapoda: Anomura: Paguroidea). Journal of Crustacean Biology, 2018, 38(6): 780-793.

ASHIQ U.R., RAHMAN M, KUMAR P.C., MOHANCHANDER P., MANIKANTAN G., KHAN A.S., and LYLA P.S. All of a piece: identification of the different life stages of Scylla serrata (Forsskål, 1775) using DNA Barcodes. Journal of Aquatic Biology and Fisheries, 2020, 8; 12-17.

DELI T., KALKAN E., KARHAN S.U., UZUNOVA S., KEIKHOSRAVI A., BILGIN R., and SCHUBART C.D. Parapatric genetic divergence among deep evolutionary lineages in the Mediterranean green crab, Carcinus aestuarii (Brachyura, Portunoidea, Carcinidae), accounts for a sharp phylogeographic break in the Eastern Mediterranean BMC. Evolutionary Biology, 2018, 18: 53.

NURYANTO A., KOMALAWATI N., and SUGIHARTO. Genetic diversity assessment of Hemibagrus nemurus from rivers in Java Island, Indonesia using COI gene. Biodiversitas, 2019, 20(9): 2701-2717.

ROSSEL S., and ARBIZU P.M. Revealing higher than expected diversity of Harpacticoida (Crustacea: Copepoda) in the North Sea using MALDI-toF Ms and molecular barcoding. Scientific Reports, 2019, 9: 9182.

LIPINSKAYA T., RADULOVICI A., and MAKARANKA A. First DNA barcoding based record of Echinogammarus trichiatus (Martynov, 1932) (Crustacea, Gammaridae) in Belarus. BioInvasions Records, 2018, 7(1): 55-60

GARIBIAN P.G., NERETINA A.N., TAYLOR D.J., and KOTOV A.A. Partial revision of the neustonic genus Scapholeberis Schoedler, 1858 (Crustacea: Cladocera): decoding of the barcoding results. PeerJ, 2020, 8: e10410.


Refbacks

  • There are currently no refbacks.