Large Scale LED-Modular-Based Solar Simulator and Calibration Method for PV-Module Characterization

Napat Watjanatepin, Patcharanan Sritanauthaikorn

Abstract

This study aims to design and construct a large-scale LED-based solar simulator by using a mix of the six colors of the LED modular system and to confirm the method of solar panel test under low radiation conditions with a simple calibration factor technique. The performance tests were executed on the characteristics of irradiance under IEC 60904-9 edition 2. The constructed prototype was applied for testing the I-V characteristic of the PV module under non STC. The LED module consisted of nine 50 W LEDs as the six specific wavelengths covering 400 nm – 1100 nm range. The twelve LED modules were suitable for an extended application as a large area solar simulator. The testing results showed that the spectral mismatch and the temporal instability were of class A+ and the non-uniformity was in class C. The average irradiance of solar simulator on the test plane of 152 cm × 96 cm was about 384 W/m2. This proposed method was a practical alternative method to test the mono crystalline PV module under low radiation condition. The I-V characteristic of the mono crystalline PV module tested by the solar simulator prototype was reasonable, and the I-V characteristic could be plotted and estimated by using a calibration factor.   

 

Keywords: LED module, large scale solar simulator, calibration factor, I-V characteristic.

 


Full Text:

PDF


References


INTERNATIONAL ELECTROTECHNICAL COMMISSION. IEC 60904-9: Photovoltaic devices — Part 9: Solar simulator performance requirements, 2007. https://webstore.iec.ch/preview/info_iec60904-9%7Bed2.0%7Db.pdf

SALAM R. A., SAPUTRA C., and YULIZA E. Development of a simple low-scale solar simulator and its light distribution. Proceedings of the International Conference on Instrumentation, Control and Automation, Bandung, 2016, pp. 28–31. https://doi.org/10.1109/ICA.2016.7811470

FROLOVA T. I., CHURYUMOV G. I., VLASYUK V. M., and KOSTYLYOV V. P. Combined Solar Simulator for Testing Photovoltaic Devices. Proceedings of the 1st Global Power, Energy and Communication Conference, Nevsehir, 2019, pp. 276-280. https://doi.org/10.1109/GPECOM.2019.8778607

NOVICKOVAS A., BAGUCKIS A., MEKYS A., and TAMOŠIŪNAS V. Compact light-emitting diode-based AAA Class solar simulator: design and application peculiarities. IEEE Journal of Photovoltaics, 2015, 5(4): 1137–1142. https://doi.org/10.1109/JPHOTOV.2015.2430013

TAVAKOLI M., JAHANTIGH F., and ZAROOKIAN H. Adjustable high-power-LED solar simulator with extended spectrum in UV region. Solar Energy, 2021, 220: 1130-1136. https://doi.org/10.1016/j.solener.2020.05.081

ESEN V., SAGLAM S., ORAL B., and ESEN O. C. Spectrum measurement of variable irradiance controlled LED-based solar simulator. International Journal of Renewable Energy Research, 2020, 10(1): 109-116. https://ijrer.org/ijrer/index.php/ijrer/article/view/10335

LÓPEZ-FRAGUAS E., SÁNCHEZ-PENA J. M., and VERGAZ R. A low-cost LED-based solar simulator. IEEE Transactions on Instrumentation and Measurement, 2019, 68(12): 4913-4923. https://doi.org/10.1109/TIM.2019.2899513

BLISS M., BETTS T. R., and GOTTSCHALG R. Initial solar cell characterisation test and comparison with a LED-based solar simulator with variable flash speed and spectrum. Proceedings of the Photovoltaic Science Application and Technology Conference, Bath, 2008, pp. 215-218.

STUCKELBERGER M., PERRUCHE B., BONNET-EYMARD M., RIESEN Y., DESPEISSE M.,

HAUG F.-J., and BALLIF C. Class AAA LED-based solar simulator for steady-state measurements and light soaking. IEEE Journal of Photovoltaics, 2014, 4(5): 1282–1287. https://doi.org/10.1109/JPHOTOV.2014.2335738

WATJANATEPIN N. Design construct and evaluation of six-spectral LEDs-based solar simulator based on IEC 60904-9. International Journal of Engineering and Technology, 2017, 9(2): 923-931. https://doi.org/10.21817/ijet/2017/v9i2/170902101

RUMYANTSEV V. D., LARIONOV V. R., MALEVSKIY D. A., POKROVSKIY P. V., and SADCHIKOV N. A. Solar simulator for characterization of the large-area HCPV modules. AIP Conference Proceedings, 2011, 1407: 212. https://doi.org/10.1063/1.3658329

CHEN Q., JIN X., and XUE L. Modeling and optimization of multi-LED solar spectrum synthesis with widely-tuning radiant flux output. Optik, 2019, 180: 276-284. https://doi.org/10.1016/j.ijleo.2018.11.102

ALDOSHINA O., YUGAY V., KALIASKAROV N., ESENJOLOV U., and NESIPOVA S. Solar simulator on the basis of powerful light-emitting diodes. MATEC Web of Conferences, 2018, 155: 01035. https://doi.org/10.1051/matecconf/201815501035

CABALLERO C. A. U., PONCE R. R., and MUÑOZ F. G. M. Design of a LED-based solar simulator for energy harvesting applications. Proceedings of the IEEE International Autumn Meeting on Power, Electronics and Computing, Ixtapa, 2017, pp. 1-6. https://doi.org/10.1109/ROPEC.2017.8261661

BODNÁR I., KOÓS D., ISKI P., and SKRIBANEK Á. Design and Construction of a Sun Simulator for Laboratory Testing of Solar Cells. Acta Polytechnica Hungarica, 2020, 17(3): 165-184. https://doi.org/10.12700/aph.17.3.2020.3.9

COLAROSSI D., TAGLIOLINI E., PRINCIPI P., and FIORETTI R. Design and Validation of an Adjustable Large-Scale Solar Simulator. Applied Sciences, 2021, 11(4): 1964. https://doi.org/10.3390/app11041964

MENG Q., WANG Y., and ZHANG L. Irradiance characteristics and optimization design of a large-scale solar simulator. Solar Energy, 2011, 85(9): 1758-1767. https://doi.org/10.1016/j.solener.2011.04.014

AL-AHMAD A. Y., VAUGHAN B., HOLDSWORTH J., ZHOU X., BELCHER W., and DASTOOR P. LED Configuration for Large Area Solar Simulator Applications. Proceedings of the International Conference on Nanoscience and Nanotechnology, Wollongong, 2018. https://www.researchgate.net/publication/322909851_LED_Configuration_for_Large_Area_Solar_Simulator_Applications

PV LIGHTHOUSE. Spectral Mismatch Calculator, n.d. https://www.pvlighthouse.com.au/

KUSUMA P., PATTISON P. M., and BUGBEE B. From physics to fixtures to food: current and potential LED efficiency. Horticulture Research, 2020, 7(56): 1-9. https://doi.org/10.1038/s41438-020-0283-7

PLYTA F., BETTS T., and GOTTSCHALG R. Potential for LED solar simulators. Proceedings of the IEEE 39th Photovoltaic Specialists Conference, Tampa, Florida, 2013, pp. 0701-0705. https://doi.org/10.1109/PVSC2013.6744248

MATIAS C. A., FURRIEL G. P., SANTOS L. M., CALIXTO W. P., BARBOSA J. L. F., DE OLIVEIRA S. B., and ALVES A. J. Optimized Solar Simulator Structure for Uniform Irradiance Distribution. Proceedings of the IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, Palermo, 2018, pp. 1-6. https://doi.org/10.1109/EEEIC.2018.8494430

LINDEN K. J., NEAL W. R., and SERREZE H. B. Adjustable spectrum LED solar simulator. Proceedings Volume 9003, Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVIII, 2014, 900317. https://doi.org/10.1117/12.2035649

OSTERWALD C. R., ANEVSKY S., BARUA A. K., CHAUDHURI P., DUBARD J., EMERY K., HANSEN B., KING D., METZDORF J., NAGAMINE F., SHIMOKAWA R., WANG Y.X., WITTCHEN T., ZAAIMAN W., ZASTROW A., and ZHANG J. The World Photovoltaic Scale: An International Reference Cell Calibration Program. Proceedings of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, California, 1997, pp. 1209-1212. https://doi.org/10.1109/PVSC.1997.654306

KHAN F., SINGH S. N., and HUSAIN M. Effect of illumination intensity on cell parameters of a silicon solar cell. Solar Energy Materials and Solar Cells, 2010, 94(9): 1473-1476. https://doi.org/10.1016/j.solmat.2010 .03.018

DIRNBERGER D. Photovoltaic module measurement and characterization in the laboratory. In: PEARSALL N. (ed.) The Performance of Photovoltaic (PV) Systems: Modelling, Measurement and Assessment. Woodhead Publishing, Cambridge, 2017: 23-70. https://doi.org/10.1016/B978-1-78242-336-2.00002-1

HERRMANN W., & WIESNER W. Modeling of PV Modules - The Effects of Non-Uniform Irradiance on Performance Measurements with Solar Simulators. Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, 2000. https://doi.org/10.4324/9781315074405-71

SONG T., JOHNSTON S., FRÜHAUF F., BAUER J., BREITENSTEIN O., and LEVI D. Quantitative Study of the Effect of Non-Uniform Irradiance on Module Performance Combining EL and DLIT Imaging with Circuit Modeling. Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion, Waikoloa Village, Hawaii, 2018, pp. 3618-3622. https://doi.org/10.1109/PVSC.2018.8548278

JAPANESE STANDARDS ASSOCIATION. JIS C 8912: Solar Simulators for Crystalline Solar Cells and Modules, 2015. https://global.ihs.com/doc_detail.cfm?document_name=JIS%20C%208912&item_s_key=00275485

ASTM INTERNATIONAL. ASTM E927-05: Standard Specification for Solar Simulation for Terrestrial Photovoltaic Testing. ASTM International, West Conshohocken, Pennsylvania, 2005. https://doi.org/10.1520/E0927-05


Refbacks

  • There are currently no refbacks.