Life History Strategies of Crustose Coraline Algae (Rhodophyta) as Resilience Indicator of Coral Reef at Nature Reserve Pulau Sempu

Andik Isdianto, Oktiyas Muzaky Luthfi, Guntur, Muhammad Arif Asadi, Nuddin Harahab, Andi Kurniawan, Agus Dwi Wicaksono, Rosdianto, Berlania Mahardika Putri

Abstract

Crustose Coralline Algae (CCA) are known as one of the calcifying algae which have important ecological responsibility on coral reef thus attracting coral juvenile, unstable binding substrate, source of food, and creating a substrate for some invertebrates. However, the study on the life histories of these algae was very poor when compared with coral. South Malang, East Java, directly faces the Indian Ocean and has a spatial coral reef ecosystem scattered in many places, one of the Nature Reserve Pulau Sempu (NRPS). This study aimed to get information regarding CCA recruitment and their growth strategy in plate materials. We used two different tile materials (settlement plates) composed of silica and carbonate base. The research result showed that CCA adhered Palimanan stone that contained more silica. The position also defined CCA recruitment because horizontal position is more calcified than the horizontal one. This research demonstrated the availability of CCA juveniles to succeed in their recruitment process and gave hope to the coral recruitment coral in Nature Reserve Pulau Sempu put over in substrate with coated CCA.

Keywords: benthic biotas, coral reef, recruitment, settlement.


Full Text:

PDF


References


POLOCZANSKA E. The IPCC Special Report on Ocean and Cryosphere in a Changing Climate - a view from the mountain tops to the deepest depths, Journal Article DP - 2020 TA - Earth and Space Science Open Archive 2020.

https://doi.org/10.1002/essoar.10502454.1

CLAAR D. C. L. SZOSTEK J. M., MCDEVITT-IRWIN, SCHANZE J. J., and BAUM J. K. Global patterns and impacts of El Niño events on Coral Reefs: A meta-analysis. PLOS One, 2018, 13(2): e0190957.

https://doi.org/10.1371/journal.pone.0190957

FRANÇA F. M., BENKWITT C. E., PERALTA G., ROBINSON J. P. W., GRAHAM N. A. J., TYLIANAKIS J. M., BERENGUER E., LEES A. C., FERREIRA J., LOUZADA J. and BARLOW J. Climatic and local stressor interactions threaten tropical forests and Coral Reefs. Philosophical Transactions of the Royal Society B, 2020, 375(1794): 20190116.

https://doi.org/10.1098/rstb.2019.0116

ROGERS C. S. Coral reef resilience through biodiversity. International Scholarly Research Notices, 2013.

https://doi.org/10.5402/2013/739034

DONE T. J. Simulation of the effects of Acanthaster planci on the population structure of massive corals in the genus Porites: evidence of population resilience? Coral Reefs, 1987, 6(2): 75-90.

https://doi.org/10.1007/BF00301377

COLGAN M. W. Coral reef recovery on Guam (Micronesia) after catastrophic predation by Acanthaster planci. Ecology, 1987, 68(6): 1592-1605.

https://doi.org/10.2307/1939851

BOHNSACK, J. A. Species turnover and the order versus chaos controversy concerning reef fish community structure. Coral Reefs, 1983, 1(4): 223-228.

https://doi.org/10.1007/BF00304419

WIEBE, W. J. Coral reef energetics. In Concepts of Ecosystem Ecology, Springer, 1988: 231-245.

https://doi.org/10.1007/978-1-4612-3842-3_11

ERNEST E. H. JR. and BUNKLEY-WILLIAMS L. The world-wide coral reef bleaching cycle and related sources of coral mortality, Atoll research bulletin, 1990, 335: 1-67.

https://doi.org/10.5479/si.00775630.335.1

BELLWOOD D. R., HUGHES T. P., FOLKE C., and NYSTRÖM M. Confronting the coral reef crisis. Nature, 2004, 429(6994): 827.

https://doi.org/10.1038/Nature02691

ANDRES N. G. and RODENHOUSE N. L. Resilience of corals to hurricanes: a simulation model. Coral Reefs, 1993, 12(3): 167-175.

https://doi.org/10.1007/BF00334476

HUGHES T. P., GRAHAM N. A. J., JACKSON J. B. C., MUMBY P. J., and STENECK R. S. Rising to the challenge of sustaining coral reef resilience. Trends in Ecology and Evolution, 2010, 25(11): 633-642.

https://doi.org/10.1016/j.tree.2010.07.011

BACHTIAR I., DAMAR A., and ZAMANI N. P. Practical resilience index for coral reef assessment. Ocean Science Journal, 2019, 54(1): 117-127.

https://doi.org/10.1007/s12601-019-0002-1

MCLEOD E., SHAVER E. C., BEGER M., KOSS J., and GRIMSDITCH G. Using resilience assessments to inform the management and conservation of coral reef ecosystems. Journal of Environmental Management, 2021, 277111384.

https://doi.org/10.1016/j.jenvman.2020.111384

KESHAVMURTHY S., KUO C.-Y., HUANG Y.-Y, CARBALLO-BOLAÑOS R., MENG P.-J., WANG J.-T., and CHEN C. A. Coral reef resilience in Taiwan: Lessons from long-term ecological research on the Coral Reefs of Kenting National Park (Taiwan). Journal of Marine Science and Engineering, 2019, 7(11): 388.

https://doi.org/10.3390/jmse7110388

BRAND F. S. and JAX K. Focusing the meaning (s) of resilience: resilience as a descriptive concept and a boundary object. Ecology and Society, 2007, 12(1): 23 [online].

https://doi.org/10.5751/ES-02029-120123

MAYNARD J. A., MARSHALL P. A., PARKER B., MCLEOD E., and AHMADIA G. A Guide to Assessing Coral Reef Resilience for Decision Support. UNEP, 2017: 1-44.

https://wedocs.unep.org/20.500.11822/22046

ELMER F., BELL J. J., and GARDNER J. P. A. Coral larvae change their settlement preference for crustose coralline algae dependent on availability of bare space. Coral Reefs, 2018, 37(2): 397-407.

https://doi.org/10.1007/s00338-018-1665-2

JORISSEN H., BAUMGARTNER C., STENECK R. S., and NUGUES M. M. Contrasting effects of crustose coralline algae from exposed and subcryptic habitats on coral recruits. Coral Reefs, 2020: 1-12.

https://doi.org/10.1007/s00338-020-02002-9

HARVEY A. Coralline algae of central New Zealand: an identification guide to common 'crustose' species, National Institute for Water and Atmospheric Information Series, 2005: 571-145.

https://niwa.co.nz/identification-guides-to-coralline-algae

TEBBEN J., MOTTI C. A., SIBONI N., TAPIOLAS D. M., NEGRI A. P., SCHUPP P. J., KITAMURA M., HATTA M., STEINBERG P. D., and HARDER T. Chemical mediation of coral larval settlement by crustose coralline algae. Scientific reports, 2015, 5(1): 1-11.

https://doi.org/10.1038/srep10803

WEISS, A. and MARTINDALE R. C. Crustose coralline algae increased framework and diversity on ancient Coral Reefs. PLOS One, 2017, 12(8): e0181637.

https://doi.org/10.1371/journal.pone.0181637

LITTLER M. M. and LITTLER D. S. The Nature of crustose coralline algae and their interactions on reefs, Smithsonian Contributions to the Marine Sciences, 2013, 39:199–212, https://repository.si.edu/bitstream/handle/10088/21634/SCMS39_Lang_16.pdf

WOELKERLING W. J., IRVINE L. M., and HARVEY A. S. Growth-forms in non-geniculate coralline red algae (Coralliinales, Rhodophyta). Australian systematic botany, 1993, 6(4): 277-293.

https://doi.org/10.1071/SB9930277

GOMEZ-LEMOS L. A. and DIAZ-PULIDO G. Crustose coralline algae and associated microbial biofilms deter seaweed settlement on Coral Reefs. Coral Reefs, 2017, 36(2): 453-462.

https://doi.org/10.1007/s00338-017-1549-x

LUTHFI O. M. Reef bite on poritiids Coral in reef flat area of south Java's Sea, Indonesia. Ecology, Environment and Conservation, 2017, 23(4). http://www.envirobiotechjournals.com/article_abstract.php?aid=8250&iid=240&jid=3

LUTHFI O. M., NARADIARGA L., and JAUHARI A. Gangguan Kesehatan Karang di Wilayah Perairan Cagar Alam Sempu. Kabupaten Malang. Jawa Timur Prosiding PIT XI Ikatan Sarjana Oseanologi Indonesia, 2014, 1(1). https://123dok.com/document/zw11k47q-gangguan-kesehatan-karang-wilayah-perairan-cagar-kabupaten-malang.html

ARNOLD S. N. and STENECK R. S. Settling into an increasingly hostile world: the rapidly closing "recruitment window" for corals. PLOS One, 2011, 6(12): e28681.

https://doi.org/10.1371/journal.pone.0028681

NOZAWA Y., TANAKA K., and REIMER J. D. Reconsideration of the surface structure of settlement plates used in coral recruitment studies. Zoological Studies, 2011, 50(1): 53-60. http://zoolstud.sinica.edu.tw/Journals/50.1/53.pdf

KENNEDY E. V., ORDOÑEZ A., LEWIS B. E., and DIAZ-PULIDO G. Comparison of recruitment tile materials for monitoring coralline algae responses to a changing climate. Marine Ecology Progress Series, 2017, 569129-144.

https://doi.org/10.3354/meps12076

REICH H. G., ROBERTSON D. L., and GOODBODY-GRINGLEY G. Do the shuffle: changes in Symbiodinium consortia throughout juvenile coral development. PLOS One, 2017, 12(2): e0171768.

https://doi.org/10.1371/journal.pone.0171768

DELA CRUZ D. W. and HARRISON P. L. Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Scientific reports, 2017, 7(1): 1-13.

https://doi.org/10.1038/s41598-017-14546-y

OLIVER L. M., LEHRTER J. C., and FISHER W. S. Relating landscape development intensity to coral reef condition in the watersheds of St. Croix, US Virgin Islands. Marine Ecology Progress Series, 2011, 427293-302.

https://doi.org/10.3354/meps09087

GIO P. U. and ROSMAINI E. The Robustness of Two Independent Samples t-Test Using Monte Carlo Simulation. In Institute of Physics Conference Series: Materials Science and Engineering, 2018, 300(1): , 12030.

https://doi.org/10.1088/1757-899X/300/1/012030

MCCOY S. J. and KAMENOS N. A. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. Journal of Phycology, 2015, 51(1): 6-24.

https://doi.org/10.1111/jpy.12262

VILLAS BÔAS A. B., FIGUEIREDO M. A. O., and VILLAÇA R. C. Colonization and growth of crustose coralline algae (Corallinales, Rhodophyta) on the Rocas Atoll. Brazilian Journal of Oceanography, 2005, 53147-156. https://www.scielo.br/j/bjoce/a/wXkMh6FJYK9nQp94rpVDjzg/?lang=en

MARIATH R., RODRIGUEZ R. R., and FIGUEIREDO M. A. O. Succession of crustose coralline red algae (Rhodophyta) on coralgal reefs exposed to physical disturbance in the southwest Atlantic. Helgoland marine research, 2013, 67(4): 687-696.

https://doi.org/10.1007/s10152-013-0354-3

AMADO-FILHO G. M., BAHIA R. G., MARIATH R., JESIONEK M. B., MOURA R. L., BASTOS A. C., PEREIRA-FILHO G. H., and FRANCINI-FILHO R. B. Spatial and temporal dynamics of the abundance of crustose calcareous algae on the southernmost Coral Reefs of the western Atlantic (Abrolhos Bank, Brazil). Algae, 2018, 33(1): 85-99.

https://doi.org/10.4490/algae.2018.33.2.25

TÂMEGA F. T. S. and FIGUEIREDO M. A. O. Colonization, Growth and Productivity of Crustose Coralline Algae in Sunlit Reefs in the Atlantic Southernmost Coral Reef. Frontiers in Marine Science, 2019, 681.

https://doi.org/10.3389/fmars.2019.00081

RAMÍREZ-VIAÑA A., DIAZ-PULIDO G., and GARCÍA-URUEÑA R. Bioerosion of reef-building crustose coralline algae by endolithic invertebrates in an upwelling-influenced reef. Coral Reefs, 2021, 40(2): 651-662.

https://doi.org/10.1007/s00338-021-02065-2

MARTIN S., CHARNOZ A., and GATTUSO J. P. Photosynthesis, respiration and calcification in the Mediterranean crustose coralline alga Lithophyllum cabiochae (Corallinales, Rhodophyta). European Journal of Phycology, 2013, 48(2): 163-172, https://doi.org/10.1080/09670262.2013.786790

VÁSQUEZ-ELIZONDO R. M. and ENRÍQUEZ S. Light absorption in coralline algae (Rhodophyta): A morphological and functional approach to understanding species distribution in a coral reef lagoon. Frontiers in Marine Science, 2017, 1-17, https://doi.org/10.3389/fmars.2017.00297.

KUFFNER I. B., HICKEY T. D., and MORRISON J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs, 2013, 32(4): 987-997.

CORNWALL C. E., DIAZ-PULIDO G., and COMEAU S. Impacts of ocean warming on coralline algal calcification: Meta-analysis, knowledge gaps, and key recommendations for future research. Frontiers in Marine Science, 2019, 6186.

https://doi.org/10.3389/fmars.2019.00186


Refbacks

  • There are currently no refbacks.