Evaluation and Comparison of the Formulations of Amlodipine-Loaded Bovine Serum Albumin and Egg Albumin Microspheres

Nandini Pasam, P. N. Remya, M. Krithiga, Nehal Thomas, H. Gayathri, T. S. Saraswathi


The main aim of this research is to compare amlodipine-loaded bovine serum albumin (BSA) and egg albumin microspheres, to obtain the optimal formulation of amlodipine microspheres for the treatment of hypertension. The ability to load various drugs, higher cell uptake and controlled kinetics for drug release are exceptional benefits offered by this system. In addition, the rate of chemical degradation in the solid matrix can also be modified, and offers delivery of chemically–sensitive lipophilic ingredients. On account of these benefits, this study was designed for the development of amlodipine microspheres for oral administration, and will be a beneficial approach to achieving increased bioavailability. Microspheres can be prepared by industrially-scalable techniques. Bovine serum albumin (BSA) microspheres containing amlodipine besylate were prepared by using emulsification cross-linking method. In this method, glutaraldehyde is used as a cross-linking agent. Egg albumin microspheres containing amlodipine besylate were prepared by using an emulsification heat denaturation method. The parameters studied in this research include particle size analysis, entrapment efficiency, in-vitro drug release studies, SEM analysis and Fourier Transform Infra Red Spectroscopy (FTIR) studies. The results indicate that the amlodipine-loaded BSA microspheres provide more prolongated action when compared to that of amlodipine-loaded egg albumin microspheres.


Keywords: amlodipine, microspheres, bovine serum albumin, scanning electron microscopy, FTIR.



Full Text:



CHANDNA A., BATRA D., KAKAR S., and SINGH R. A review on target drug delivery: magnetic microspheres. Journal of Acute Disease, 2013, 2(3): 189-195. https://doi.org/10.1016/S2221-6189(13)60125-0

PRASAD B. S., GUPTA V. R., DEVANNA N., and JAYASURYA K. Microspheres as drug delivery system-a review. Journal of Global Trends in Pharmaceutical Sciences, 2014, 5: 1961-1972.

PATEL N. R., PATEL D. A., BHARADIA P. D., PANDYA V., and MODI D. Microsphere as a novel drug delivery. International Journal of Pharmacy & Life Sciences, 2011, 2(8): 992-997. http://www.ijplsjournal.com/issues%20PDF%20files/aug%202011/9.pdf

RAMTEKE K. H., JADHAV V.B., and DHOLE S. N. Microspheres: as carrieres used for novel drug delivery system. IOSR Journal of Pharmacy, 2012, 2(4): 44-48. https://doi.org/10.9790/3013-24204448

FARAH F. H. Magnetic microspheres: a novel drug delivery system. World Journal of Pharmacy and Pharmaceutical Sciences, 2017, 6(9): 93-112. https://doi.org/10.20959/wjpps20179-10054

KAKAR S., BATRA D., SINGH R., and NAUTIYAL U. Magnetic microspheres as magical novel drug delivery system: A review. Journal of Acute Disease, 2013, 2(1): 1-12. https://doi.org/10.1016/S2221-6189(13)60087-6

VENKATESAN P., MANAVALAN R., and VALLIAPPAN K. Microencapsulation: a vital technique in novel drug delivery system. Journal of Pharmaceutical Sciences and Research, 2009, 1(4): 26-35. https://www.jpsr.pharmainfo.in/Documents/Volumes/Vol1Issue4/jpsr01040903.pdf

WONG C. Y., AL-SALAMI H., and DASS C. R. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. International Journal of Pharmaceutics, 2018, 537(1–2): 223-244. https://doi.org/10.1016/j.ijpharm.2017.12.036

VERMA R., VERMA S., and KUMAR S. Microsphere - A Novel Drug Delivery System. Research Chronicle in Health Sciences, 2019, 5(1): 5-14. https://www.rchsjournal.com/index.php/rchs/article/view/67

PAVANETTO F., GENTA I., GIUNCHEDI P., CONTI B., and CONTE U. Spray-Dried Albumin Microspheres for the Intra-Articular Delivery of Dexamethasone. Journal of Microencapsulation, 2008, 11(4): 445-454. https://doi.org/10.3109/02652049409034262

KATTI D., & KRISHNAMURTI N. Preparation of albumin microspheres by an improved process. Journal of Microencapsulation, 1999, 16(2): 231-242. https://doi.org/10.1080/026520499289202

MATHEW S., DEVI S., SANDHYA K., and SANDHYA K. Formulation and evaluation of ketorolac tromethamine-loaded albumin microspheres for potential intramuscular administration. AAPS PharmSciTech, 2007, 8(1): E100–E108. https://doi.org/10.1208/pt0801014

SINGH P., KUMAR S. K. S., PARTHIBAN S., PEEYUSH, and MANI T. T. Formulation and evaluation of ivabradine hydrochloride loaded egg albumin microspheres. Journal of Pharmaceutical Research and Opinion, 2012, 2(2): 25–28. https://innovativejournal.in/index.php/jpro/article/view/695

SHAILESH T., VIPUL P., GIRISHBHAI J., and MANISH C. Preparation and In Vitro Evaluation of Ethylcellulose Coated Egg Albumin Microspheres of Diltiazem Hydrochloride. Journal of Young Pharmacists, 2010, 2(1): 27-34. https://doi.org/10.4103/0975-1483.62209

DEVESWARAN R., MANAVALAN R., MADHAVAN V., and BHARATH S. Formulation and evaluation of albumin microspheres containing aceclofenac. International Journal of Pharmaceutical Sciences Review and Research, 2010, 4(1): 112-117. https://www.globalresearchonline.net/journalcontents/volume4issue1/Article%20020.pdf

SINHA V., SINGLA A., WADHAWAN S., KAUSHIK R., KUMRIA R., BANSAL K., and DHAWAN S. Chitosan microspheres as a potential carrier for drugs. International Journal of Pharmaceutics, 2004, 274(1-2): 1-33. https://doi.org/10.1016/j.ijpharm.2003.12.026

REN L., XU J., ZHANG Y., ZHOU J., CHEN D., and CHANG Z. Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium. International Journal of Biological Macromolecules, 2019, 135: 898-906. https://doi.org/10.1016/j.ijbiomac.2019.06.007

YADAV A. V., & MOTE H. H. Development of biodegradable starch microspheres for intranasal delivery. Indian Journal of Pharmaceutical Sciences, 2008, 70(2): 170-174. https://doi.org/10.4103/0250-474X.41450

MUNDARGI R. C., SHELKE N. B., ROKHADE A. P., PATIL S. A., and AMINABHAVI T. M. Formulation and in-vitro evaluation of novel starch-based tableted microspheres for controlled release of ampicillin. Carbohydrate Polymers, 2008, 71(1): 42-53. https://doi.org/10.1016/j.carbpol.2007.05.013

STENEKES R., FRANSSEN O., VAN BOMMEL E., CROMMELIN D., and HENNINK W. The use of aqueous PEG/dextran phase separation for the preparation of dextran microspheres. International Journal of Pharmaceutics, 1999, 183(1): 29-32. https://doi.org/10.1016/S0378-5173(99)00038-1

FRANSSEN O., STENEKES R., and HENNINK W. Controlled release of a model protein from enzymatically degrading dextran microspheres. Journal of Controlled Release, 1999, 59(2): 219-228. https://doi.org/10.1016/S0168-3659(98)00193-X

RUAN G., & FENG S. Preparation and characterization of poly(lactic acid)–poly(ethylene glycol)–poly(lactic acid) (PLA–PEG–PLA) microspheres for controlled release of paclitaxel. Biomaterials, 2003, 24(27): 5037-5044. https://doi.org/10.1016/S0142-9612(03)00419-8

ZHAO H., SAATCHI K., and HÄFELI U. Preparation of biodegradable magnetic microspheres with poly(lactic acid)-coated magnetite. Journal of Magnetism and Magnetic Materials, 2009, 321(10): 1356-1363. https://doi.org/10.1016/j.jmmm.2009.02.038

ALBERTSSON A., CARLFORS J., and STURESSON C. Preparation and characterisation of poly(adipic anhydride) microspheres for ocular drug delivery. Journal of Applied Polymer Science, 1996, 62(4): 695-705.

HENG P., CHAN L., and WONG T. Formation of alginate microspheres produced using emulsification technique. Journal of Microencapsulation, 2003, 20(3): 401-413. https://doi.org/10.3109/02652040309178078

KING T., & PATRICK C. Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(DL-lactic-co-glycolic acid)/poly(ethylene glycol) microspheres using a solid encapsulation/single emulsion/solvent extraction technique. Journal of Biomedical Materials Research, 2000, 51(3): 383-390. https://doi.org/10.1002/1097-4636(20000905)51:3<383::AID-JBM12>3.0.CO;2-D

ALI M., WALBOOMERS X. F., JANSEN J. A., and YANG F. Influence of formulation parameters on encapsulation of doxycycline in PLGA microspheres prepared by double emulsion technique for the treatment of periodontitis. Journal of Drug Delivery Science and Technology, 2019, 52: 263-271. https://doi.org/10.1016/j.jddst.2019.04.031

MUTALIYEVA B., GRIGORIEV D., MADYBEKOVA G., SHARIPOVA A., AIDAROVA S., SAPARBEKOVA A., and MILLER R. Microencapsulation of insulin and its release using w/o/w double emulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521: 147-152. https://doi.org/10.1016/j.colsurfa.2016.10.041

ISLAM M., YEUM J., and DAS A. Synthesis of poly(vinyl acetate–methyl methacrylate) copolymer microspheres using suspension polymerization. Journal of Colloid and Interface Science, 2012, 368(1): 400-405. https://doi.org/10.1016/j.jcis.2011.11.002

BAI F., YANG X., and HUANG W. Synthesis of Narrow or Monodisperse Poly(divinylbenzene) Microspheres by Distillation−Precipitation Polymerization. Macromolecules, 2004, 37: 9746-9752. https://doi.org/10.1021/ma048566l

BAYOMI M., AL-SUWAYEH S., EL-HELW A., and MESNAD A. Preparation of casein–chitosan microspheres containing diltiazem hydrochloride by an aqueous coacervation technique. Pharmaceutica Acta Helvetiae, 1998, 73(4): 187-192. https://doi.org/10.1016/S0031-6865(98)00020-X

ANDRIANOV A., CHEN J., and PAYNE L. Preparation of hydrogel microspheres by coacervation of aqueous polyphosphazene solutions. Biomaterials, 1998, 19(1-3): 109-115. https://doi.org/10.1016/S0142-9612(97)00227-5

ALBERTINI B., PASSERINI N., DI SABATINO M., VITALI B., BRIGIDI P., and RODRIGUEZ L. Polymer–lipid based mucoadhesive microspheres prepared by spray-congealing for the vaginal delivery of econazole nitrate. European Journal of Pharmaceutical Sciences, 2009, 36(4-5): 591-601. https://doi.org/10.1016/j.ejps.2008.12.009

ALBERTINI B., PASSERINI N., PATTARINO F., and RODRIGUEZ L. New spray congealing atomizer for the microencapsulation of highly concentrated solid and liquid substances. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(1): 348-357. https://doi.org/10.1016/j.ejpb.2007.09.011

TAVERNA M. E., BUSATTO C. A., LESCANO M. R., NICOLAU V. V., ZALAZAR C. S., MEIRA G. R., and ESTENOZ D. A. Microparticles based on ionic and organosolv lignins for the controlled release of atrazine. Journal of Hazardous Materials, 2018, 359: 139-147. https://doi.org/10.1016/j.jhazmat.2018.07.010

MASAELI R., KASHI T. S. J., and ESFANDYARI-MANESH M. Preparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres. Iranian Journal of Pharmaceutical Research, 2016, 15: 205-211. https://doi.org/10.22037/IJPR.2016.1821

HENIK R., SNYDER P., and VOLK L. Treatment of systemic hypertension in cats with amlodipine besylate. Journal of the American Animal Hospital Association, 1997, 33(3): 226–234. https://doi.org/10.5326/15473317-33-3-226

PATIL S., & MURTHY R. Preparation and in vitro evaluation of mucoadhesive chitosan microspheres of amlodipine besylate for nasal administration. Indian Journal of Pharmaceutical Sciences, 2006, 68(1): 64-67. https://doi.org/10.4103/0250-474X.22966

SHERAZ M., AHSAN S., KHAN M., AHMED S., and AHMAD I. Formulations of Amlodipine: A Review. Journal of Pharmaceutics, 2016, 2016: 8961621. https://doi.org/10.1155/2016/8961621

NURAINI B. Risk factors of hypertension. Medical Journal of Lampung University, 2015, 4(5): 10-19. https://juke.kedokteran.unila.ac.id/index.php/majority/article/view/602

WIKIPEDIA. Coronary artery disease, 2021. https://en.wikipedia.org/wiki/Coronary_artery_disease

WIKIPEDIA. Stroke, 2021. https://en.wikipedia.org/wiki/Stroke

WIKIPEDIA. Heart failure, 2021. https://en.wikipedia.org/wiki/Heart_failure


  • There are currently no refbacks.