Virulence of Mutated SARS-CoV-2 and Susceptibility of COVID-19 Patient: A Literature Review
Abstract
COVID-19 originated from a pneumonia case with a mysterious cause in Wuhan, China. The spread of the disease is increasingly widespread until WHO declares a pandemic COVID-19 in March 2020. The case increase in human to human continues to occur in almost all world regions until today. SARS COV-2 virus mutations were reported to occur in several countries. This review aims to determine the virulence of mutated SARS-CoV-2 and human susceptibility to virus infection. We discussed the viral origin, pathogenesis, transmission to the host body, risk factors for viral information, infection symptoms, mutations, and examinations performed to support disease diagnosis. Modifications of the SARS-COV-2 virus occur in one or more virus components, i.e., Spike Protein (S), Envelope (E), Membrane Glycoprotein (M), and Nucleocapsid (N). Currently, mutations D.6.1.4.G, B.1.1.7, R203K, and B.1.1.28 are found. This mutation is related to the ease with which a person becomes infected with COVID-19. The level of host susceptibility was influenced by groups of ACE2, TMPRSS2, CTSB, and CTSL. The risk factor of COVID-19 is higher in people with comorbid; each infected person's symptoms can be different. The new mutations of SARS-CoV-2 have been found more virulent and dangerous in several countries around the world. The real-time reverse transcription-polymerase chain reaction (rRT-PCR) examination is required for the primary diagnosis of COVID-19.
Keywords: COVID-19, virulence, susceptibility, SARS-COV-2, mutation, infection disease.
Full Text:
PDFReferences
CUCINOTTA D., VANELLI M. WHO declares COVID-19 a pandemic. Acta Biomedica, 2020, 91:157–160. https://doi.org/10.23750/abm.v91i1.9397.
ROTHAN H.A., BYRAREDDY S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 2020, 109: 102433. https://doi.org/10.1016/j.jaut.2020.102433.
LI Q., GUAN X., WU P., WANG X., ZHOU L., TONG Y., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine, 2020, 382:1199–1207. https://doi.org/10.1056/NEJMoa2001316.
TROUGAKOS I.P., STAMATELOPOULOS K., TERPOS E., TSITSILONIS O.E., AIVALIOTI E., PARASKEVIS D., et al. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. Journal of Biomedical Science, 2021, 28(1).
https://doi.org/10.1186/s12929-020-00703-5.
CHEN Y., LIU Q., GUO D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 2020, 92:418–423. https://doi.org/10.1002/jmv.25681.
MALDONADO L.L., BERTELLI A.M., KAMENETZKY L. Molecular features similarities between SARS-CoV-2, SARS, MERS, and critical human genes could favor the viral infections and trigger collateral effects. Scientific Reports, 2021, 11:4108. https://doi.org/10.1038/s41598-021-83595-1.
World Health Organization. WHO Coronavirus (COVID-19) 2021.
CHEN Y., GUO Y., PAN Y., ZHAO Z.J. Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications, 2020, 525:135–40. https://doi.org/10.1016/j.bbrc.2020.02.071.
HAN Y., YANG H. The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective. Journal of Medical Virology, 2020, 92:639–644.
https://doi.org/10.1002/jmv.25749.
ZHOU P., YANG X. L., WANG X.G., HU B., ZHANG L., ZHANG W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579:270–273.
https://doi.org/10.1038/s41586-020-2012-7.
ZHANG T., WU Q., ZHANG Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology, 2020, 30:1346-1351.e2. https://doi.org/10.1016/j.cub.2020.03.022.
SHEREEN M.A., KHAN S., KAZMI A., BASHIR N., SIDDIQUE R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 2020, 24:91–98. https://doi.org/10.1016/j.jare.2020.03.005.
LI F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual Review of Virology, 2016, 3:237–261.
https://doi.org/10.1146/annurev-virology-110615-042301.
SCHOEMAN D., FIELDING B.C. Coronavirus envelope protein: Current knowledge. Virology Journal, 2019, 16:1–22. https://doi.org/10.1186/s12985-019-1182-0.
LU R., ZHAO X., LI J., NIU P., YANG B., WU H., et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395:565–574. https://doi.org/10.1016/S0140-6736(20)30251-8.
ZHENG J. SARS-coV-2: An emerging coronavirus that causes a global threat. International Journal of Biological Sciences, 2020, 16:1678– 1685. https://doi.org/10.7150/ijbs.45053.
WRAPP D., WANG N., CORBETT K.S., GOLDSMITH J.A., HSIEH C.-L., BIONA O., et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80-), 2020, 367:1260–1263. https://doi.org/10.1126/science.abb2507.
DE WIT E., VAN DOREMALEN N., FALZARANO D., MUNSTER V.J. SARS, and MERS: Recent insights into emerging coronaviruses. Nature Reviews Microbiology, 2016, 14:523–34. https://doi.org/10.1038/nrmicro.2016.81.
HOFFMANN M., KLEINE-WEBER H., SCHROEDER S., KRÜGER N., HERRLER T., ERICHSEN S., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020, 181:271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052.
LAN J., GE J., YU J., SHAN S., ZHOU H., FAN S., et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020,
:215–20. https://doi.org/10.1038/s41586-020-2180-5.
GKOGKOU E., BARNASAS G., VOUGAS K., TROUGAKOS I.P. Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators. Redox Biology, 2020, 36: 101615. https://doi.org/10.1016/j.redox.2020.101615.
SONG F., SHI N., SHAN F., ZHANG Z., SHEN J., LU H., et al. Emerging 2019 novel coronavirus (2019-NCoV) pneumonia. Radiology, 2020, 295:210–217. https://doi.org/10.1148/radiol.2020200274.
WANG D., HU B., HU C., ZHU F., LIU X., ZHANG J., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. Journal of the American Medical Association, 2020, 323:1061–1069.
https://doi.org/10.1001/jama.2020.1585.
MANCIA G., REA F., LUDERGNANI M., APOLONE G., CORRAO G. Renin–Angiotensin–Aldosterone System Blockers and the Risk of Covid-19. New England Journal of Medicine, 2020, 382:2431–2440.
https://doi.org/10.1056/nejmoa2006923.
ONDER G., REZZA G., BRUSAFERRO S. Case-fatality rate and characteristics of patients dying concerning COVID-19 in Italy. Journal of the American Medical Association, 2020, 323:1775–1776.
https://doi.org/10.1001/jama.2020.4683.
LONGBOTTOM E.R.、TORRANCE H.D.T.、OWEN H.C.、FRAGKOU P.C.、HINDS C.J.、PEARSE R.M. et al. Features of postoperative immune suppression are reversible with interferon-gamma and independent of Interleukin-6 pathways. Annals of Surgery, 2016, 264:370–377. https://doi.org/10.1097/SLA.0000000000001484.
SICA A., MASSAROTTI M. Myeloid suppressor cells in cancer and autoimmunity. Journal of Autoimmunity, 2017, 85:117–25.
https://doi.org/10.1016/j.jaut.2017.07.010.
XIA Y., JIN R., ZHAO J., LI W., SHEN H. Risk of COVID-19 for patients with cancer. Lancet Oncology, 2020:21:e180.
https://doi.org/10.1016/S1470-2045(20)30150-9.
COOPER T., WOODWARD B., ALOM S., HARKY A. Coronavirus disease 2019 (COVID-19) outcomes in HIV/AIDS patients: a systematic review. HIV Medicine, 2020, 21:567–577. https://doi.org/10.1111/hiv.12911.
BROMAN N., RANTASÄRKKÄ K., FEUTH T., VALTONEN M., WARIS M., HOHENTHAL U., et al. IL-6 and other biomarkers as predictors of severity in COVID-19. Annals of Medicine, 2020, 53:1–5. https://doi.org/10.1080/07853890.2020.1840621.
GUAN W., NI Z., HU Y., LIANG W., OU C., HE J., et al. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 2020, 382:1708–1720. https://doi.org/10.1056/nejmoa2002032.
CAI H. Sex difference and smoking predisposition in patients with COVID-19. Lancet Respir Med 2020;8:e20. https://doi.org/10.1016/S2213-2600(20)30117-X.
CHEN H, GUO J., WANG C., LUO F., YU X., ZHANG W., et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet, 2020, 395:809–815. https://doi.org/10.1016/S0140-6736(20)30360-3.
World Health Organization. Laboratory Testing for Coronavirus Disease 2019 (COVID-19) in suspected human cases 2020.
WANG W., XU Y., GAO R., LU R., HAN K., WU G., et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Journal of the American Medical Association, 2020, 323:1843–1844.
https://doi.org/10.1001/jama.2020.3786.
HUNTER P.R., BRAINARD J., GRANT A. The Impact of the November 2020 English National Lockdown on COVID-19 case counts. MedRxiv 2021:2021.01.03.21249169. https://doi.org/10.1101/2021.01.03.21249169.
VOLZ E., MISHRA S., CHAND M., BARRETT J.C., JOHNSON R., HOPKINS S., et al. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data. MedRxiv, 2021:2020.12.30.20249034. https://doi.org/10.1101/2020.12.30.20249034.
TEGALLY H., WILKINSON E., LESSELLS R.R., GIANDHARI J., PILLAY S., MSOMI N., et al. Major new lineages SARS-CoV-2 emerge and spread in South Africa during the lockdown. MedRxiv 2020:2020.10.28.20221143. https://doi.org/10.1101/2020.10.28.20221143.
ZHOU R., LI F., CHEN F., LIU H., ZHENG J., LEI C., et al. Viral dynamics in asymptomatic patients with COVID-19. International Journal of Infectious Diseases, 2020, 96:288–290.
https://doi.org/10.1016/j.ijid.2020.05.030.
KLEIBOEKER S., COWDEN S., GRANTHAM J., NUTT J., TYLER A., BERG A., et al. SARS-CoV-2 viral load assessment in respiratory samples. Journal of Clinical Virology, 2020, 129: 104439. https://doi.org/10.1016/j.jcv.2020.104439.
FLORES-ALANIS A., CRUZ-RANGEL A., RODRÍGUEZ-GÓMEZ F., GONZÁLEZ J., TORRES-GUERRERO C.A., DELGADO G., et al. Molecular epidemiology surveillance of SARS-CoV-2: Mutations and genetic diversity one year after emerging. Pathogens , 2021, 10:184. https://doi.org/10.3390/pathogens10020184.
WANG R., CHEN J., GAO K., HOZUMI Y., YIN C., WEI G.-W. Analysis of SARS-CoV-2 mutations in the United States suggests four substrains and novel mutations variants. Communications Biology. 2021, 4:228. https://doi.org/10.1038/s42003-021-01754-6.
NAVECA F., NASCIMENTO V., SUOZA V., CORADO A., NASCIMENTO F., SILVA G., et al. Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the spike protein. NCoV-2019 Genomic Epidemiology, 2021, 12.
https://virological.org/t/phylogenetic-relationship-of-sars-cov-2-sequences-from-amazonas-with-emerging-brazilian-variants-harboring-mutations-e484k-and-n501y-in-the-spike-protein/585
ARGYROPOULOS K. V., SERRANO A., HU J., BLACK M., FENG X., SHEN G., et al. Association of initial viral load in severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) patients with outcome and symptoms. American Journal of Pathology, 2020, 190:1881–1887. https://doi.org/10.1016/j.ajpath.2020.07.001.
ZOU L., RUAN F., HUANG M., LIANG L., HUANG H., HONG Z., et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. New England Journal of Medicine, 2020, 382:1177–1179. https://doi.org/10.1056/nejmc2001737.
HE X., LAU E.H.Y., WU P., DENG X., WANG J., HAO X., et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine, 2020, 26:672–675. https://doi.org/10.1038/s41591-020-0869-5.
Refbacks
- There are currently no refbacks.