Effect of Different Substrates on Growth and Protein Content of Caulerpa Racemosa
Abstract
Caulerpa racemosa is a green seaweed commonly found in several locations in the Indo-Pacific ocean, including along the coast of Indonesia, especially in Jepara, Central Java. This study aims to determine the best type of substrate to increase the growth of C. racemosa and its protein content. Utilizing the suitable substrate is expected to increase the growth, production, quality improvement, and protein content of C. racemosa. Research on the substrate on the growth and protein content of C. racemosa from Jepara has never been carried out. The treatments used in this research were: A (bamboo woven); B (coral fragments); C (sandy mud); and D (net). Data collected included Absolute Growth, Specific Growth Rate (SGR), the protein content of C. racemosa, and the water quality of the media. Results showed that the values of absolute growth and SGR in each treatment from highest to lowest were C (0.58 ± 0.14), B (0.53 ± 0.14), D (0, 32 ± 0.14), and A (0.24 ± 0.05); SGR were C (3.94 ± 0.60% / day), B (3.77 ± 0.61% / day), D (2.57 ± 1.14% / day) and A (2.05 ± 0.28% / day). The difference in the type of substrate gives a significant effect (P <0.05) on C. racemosa. The type of sandy mud substrate is the best substrate in this study for C. racemosa growth (absolute growth rate values of 0.58 ± 0.14 g and SGR values of 3.94 ± 0.60% / day). On the other hand, the bamboo woven substrate was observed the best for C. racemosa protein content (5.87%). The water quality in maintenance media is in a feasible range for the maintenance of C. racemosa.
Keywords: seagrapes, nutrition, sandy mud, growth, bamboo.
Full Text:
PDFReferences
PRADHIKA V. D, SURYONO, and SEDJATI S. Effect of Addition of Solid and Liquid Fertilizer on Growth, Total Chlorophyll and Protein Content Caulerpa racemosa, J.Agardh, 1873 (Ulvophyceae: Caulerpaceae). Journal of Marine Research, 2019, 8 (3): 269-276. https://doi.org/10.14710/jmr.v8i3.25269
MAGDUGO R. P, TERME N., LANG M., PLIEGO-CORTÉS H., MARTY C., HURTADO A. Q., BEDOUX G. and BOURGOUGNON N. An Analysis of the Nutritional and Health Values of Caulerpa racemosa (Forsskål) and Ulva fasciata (Delile) - Two Chlorophyta Collected from the Philippines. Molecules, 2020, 25(12): 2901. https://doi.org/10.3390/molecules25122901
BLEAKLEY S., & HAYES M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods, 2017, 6(5): 33. https://doi.org/10.3390/foods6050033
QUDUS B. A. A, ABDUL R. S., PALANIVELOO K., NAGAPPAN T, SURAIZA N. R. N., WEE J. G., CHELLAPPAN D. K., CHELLIAN J., and KUNNATH A. P. Bioprospecting Cultivated Tropical Green Algae, Caulerpa racemosa (Forsskal) J. Agardh: A Perspective on Nutritional Properties, Antioxidative Capacity and Anti-Diabetic Potential. Foods, 2020, 9(9): 1313. https://doi.org/10.3390/foods9091313
GAILLANDE DE C., PAYRI C., REMOISSENET G., and ZUBIA M. Caulerpa consumption, nutritional value, and farming in the Indo-Pacific region. Journal of Applied Phycology, 2017, 29: 2249–2266. https://doi.org/10.1007/s10811-016-0912-6
Seaweed Industry Association of the Philippines. https://siap-seaweed.tripod.com/
TAPOTUBUN A. M., THEODORA E., RIRY J., TAPOTUBUN E. J., FRANSINA E. G., MAILOA M. N., RIRY W. A., SETHA B., and RIEUWPASSA F. Seaweed Caulerpa sp position as functional food. Institute of Physics Conference Series: Earth and Environmental Science, 2020, 517: 1-8. https://doi.org/10.1088/1755-1315/517/1/012021
BOUMEDIENE H. K., & LOTFI B. T. First Record of Invasive Green Algae Caulerpa racemose var. cylindracea in Oran Bay (western Alegria). Indian Journal of Geo-Marine Sciences, 2019, 48(3): 335-342. http://aquaticcommons.org/26639/
SUPRIADI, SYAMSUDDIN R., ABUSTANG A., and YASIR I. The Growth and Carotenoid Content of Lawi-Lawi Caulerpa racemosa Grown in Different Substrates. Jurnal Rumput Laut Indonesia, 2016, 1(2): 117-122. https://journal.indoseaweedconsortium.or.id/index.php/jrli/article/view/28
TANDUYAN S. N., GONZAGA R. B., and BENSIG V. D. Off bottom culture of Caulerpa lentillifera in three different water levels in the marine waters of San Francisco, Cebu, Philippines. Galaxea. Journal of Coral Reef Studies (Special Issue), 2013: 123-132. https://doi.org/10.3755/GALAXEA.15.123
DAHLIA I., REJEKI S., and SUSILOWATI T. Effect of Different Fertilizer and Substrate Doses on the Growth of Caulerpa lentillifera. Journal of Aquaculture Management and Technology, 2015, 4(4): 28-34. https://ejournal3.undip.ac.id/index.php/jamt/article/view/9802
YUDASMARA G. A. Cultivation of Sea Grape (Caulerpa racemosa) through Bamboo Rigid Quadrant Nets Substrate. Department of Marine Cultivation. Universitas Pendidikan Ganesha, Singaraja-Bali, 2014, 3(2): 468–473. http://dx.doi.org/10.23887/jst-undiksha.v3i2.4481
HASBULLAH D., AKMAL, BAHRI S., AGUNG I. G. P., SUAIB M., and ILHAM I. Implementation of Various Types of Basic Substrates as Production Media of Lawi-Lawi Caulerpa sp. Octopus Jurnal Ilmu Perikanan, 2014, 3(1): 244-251. https://journal.unismuh.ac.id/index.php/octopus/article/view/543
EFFENDI I. Fisheries Biology. Yogyakarta: Yayasan Pustaka Nusantara, 1997.
MAMANG N. Seedling Growth Rate of Eucheuma cottoni with Thallus Origin Treatment on Seed Weight in Lakeba Waters, Bau-Bau City, Southeast Sulawesi. Bogor: Fakultas Perikanan dan Ilmu Kelautan Institut Pertanian Bogor, 2008.
AIN N., RUSWAHYUNI, and WIDYORINI N. Relationship between Seaweed Density and Different Bottom Substrate in Bandengan Coastal, Jepara. Diponegoro Journal of Maquares, 2014, 3(1): 99-107. https://ejournal3.undip.ac.id/index.php/maquares/article/view/4426
ALAM A. Quality of Seaweed Carrageenan Eucheuma spinosum in the waters of Punaga Village, Takalar Regency. Makassar: Fakultas Ilmu Kelautan dan Perairan, Universitas Hasamuddin, 2011.
DAWES C. J. The Biology of Commercial Important Tropical Marine Algae on Bird. In Seaweed Cultivation For Renewable Resources. Amsterdam, Elsevier, 1987.
MINISTRY OF MARINE AFFAIRS AND FISHERIES. Zoning Plan for Specific National Strategic Areas for All Islands in the Riau Islands Province 2018-2037 Nomor 41. Ministry of Marine Affairs and Fisheries, 2018.
MALTA E., GABRIEL D., and VERGARA J. Nitrogen Load and Irradiance Affect Morphology, Photosynthesis and Growth of Caulerpa prolifera (Bryopsidales: Chlorophyta). Journal of Marine Ecology Progress Series, 2005, 298: 101-114. https://doi.org/10.3354/meps298101
ROLEDA M. Y., & HURD C. L. Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia, 2019, 58(5): 552-562. https://doi.org/10.1080/00318884.2019.1622920
XIAO X., AGUSTI S., LIN F., XU C., YU Y., PAN Y., LI K., WU J., and DUARTE C. M. Resource (Light and Nitrogen) and Density-Dependence of Seaweed Growth. Frontiers in Marine Science, 2019, 16: 618. https://doi.org/10.3389/fmars.2019.00618
MASYAHORO, & MAPPIRATU. Growth Response at Various Seed Depths and Harvest Time of Seaweed Eucheuma cottonii in Palu Bay. Media Litbang Sulteng, 2010, 3(2): 104-111. http://jurnal.untad.ac.id/jurnal/index.php/MLS/article/view/78/71
HUTABARAT S. Aquatic Productivity and Plankton Study on Fisheries and Marine Science. Semarang, Badan Penerbit Universitas Diponegoro, 2000.
ALAMSJAH M. A., TJAHJANINGSIH W., and PRATIWI A. W. The effect of the combination of NPK and TSP fertilizers on growth, moisture content and chlorophyll-a Gracilaria verrucose. Jurnal Ilmiah Perikanan dan Kelautan, 2009, 1(1): 103-116. http://dx.doi.org/10.20473/jipk.v1i1.11705
BERAME. Owner Berame’s lato farm. Kalawisan, 2003.
ROMANO S. Culture of “Lato”(Caulerpa lentillefera) in ponds using artificial substrates. The Fishers Journal of Colleges in Fisheries of the Cebu State College of Science and Technology System, 1999: 16-19.
STEVEN R. A. R., & YASIR I. Effect of Substrate Differences on Seedling Growth from Seagrass Seeds Enhalus acoroides. Makassar: Fakultas Ilmu Kelautan dan Perikanan, Universitas Hasanuddin, 2013. https://www.slideshare.net/stevenlhita/pengaruh-perbedaan-substrat-terhadap-pertumbuhan
LUNING K. Seaweed, Their Environment, Biogeography, and Ecophysiology. USA: Wiley Interscience Publication, 1990.
EFFENDI H. Water Quality Review. Yogyakarta, Kanisius, 2003.
DIRECTORATE GENERAL OF AQUACULTURE. Identification and Mapping of Seaweed Cultivation Development in the Core map II Region of Bintan Regency. Final report. Directorate General of Aquaculture, 2005.
KAWAROE M., BENGEN D. G., and BARAT W. Utilization of Carbon Dioxide (CO2) for Optimizing Seaweed Growth Kappaphycus alvarezii. Omni-Akuatika, 2012: 11(15): 78–90.
SYAHLUN, RAHMAN, and RUSLAINI. Growth of Seaweed (Kappaphycus alvarezii) Brown Strain by Vertical Method. Jurnal Mina Laut Indonesia, 2013, 1(1): 122-132. https://docplayer.info/31561781-Uji-pertumbuhan-rumput-laut-kappaphycus-alvarezii-strain-coklat-dengan-metode-vertikultur.html
SILEA J., & MASITHA L. Use of Bionic Fertilizer on Seaweed Plants (Eucheuma sp). Fakultas Perikanan dan Ilmu Kelautan, Unidayan, 2014. http://www.infodiknas.com/wpcontent/uploads/2014/11/PENGGUNAAN-PUPUK-BIONIK-PADA TANAMAN-RUMPUT-LAUT.pdf
SANGKIA F. D., GERUNG G. S., and MONTOLALU R. I. Analysis of growth and quality of seaweed carrageenan Kappaphycus alvarezii in different locations the Banggai’s Waters, Central Sulawesi. Journal of Aquatic Science and Management, 2018, 6(1): 22-26. https://ejournal.unsrat.ac.id/index.php/jasm/article/view/24812
DANESA M., & RABIA S. Cultivation of Caulerpa lentillifera Using Tray and Sowing Methods in Brackishwater Pond. Environmental Sciences, 2016, 4(1): 23-29. https://doi.org/10.12988/ES.2016.51012
DARMAWATI, R., & JAYADI E. A. Optimizing the Growth of Caulerpa sp Cultivated at Different Depths in Laguruda, Takalar. Octopus Jurnal Ilmu Perikanan, 2016, 5(1): 435-442. https://doi.org/10.26618/octopus.v5i1.672
LADYBA T. The Effect of N and P Fertilizers with Different N/P Ratios on Growth and Protein Content Chlorella sp. Malang, Universitas Brawijaya, 2017.
NASMIA, ROSYIDA E., MASYAHORO A., PUTERA F. H. A., & NATSIR S. The utilization of seaweed-based liquid organic fertilizer to stimulate Gracilaria verrucose growth and quality. International Journal of Environmental Science and Technology, 2021, 18: 1637–1644. https://doi.org/10.1007/s13762-020-02921-8
CLAIRE D., MORANCAIS M., LI M., DENIAUD E., GAUDIN P., WIELGOSZ-COLLIN G., BARNATHAN G., JAOUEN P., and FLEURENCE J. Study of The Chemical Composition of Edible Red Macroalgae Grateloupia turuturu from Brittany. Food Chemistry, 2010, 119: 913-917. https://doi.org/10.1016/j.foodchem.2009.07.047
YUAN, & YVONNE. Marine algal constituents. In Marine nutraceutical and Functional Food. Boca Raton, CRC Press, 2008: 259-296.
SOELISTYOWATI D., MURNI I., and WIYOTO. Morphology of Gracilaria spp. Cultivated in a simple coastal village pond, Muara Gembong. Jurnal Akuakultur Indonesia, 2014, 13(1): 94-104. https://doi.org/10.19027/jai.13.94-104
PIAZZI L., CECCHERELLI G., and CINELLI F. Threast Macroalgae Diversity: Effect of the Introduced Green Alga C. racemosa in the Mediterranean. Marine Ecology Progress Series, 2002, 2(10): 149-159. https://doi.org/10.3354/meps210149
FONDRIEST. Dissolved Oxygen. Environmental Learning Center, 2021. http://www.fondriest.com/environmental-measurements/parameters/water-quality/dissolved-oxygen/
ILUSTRISIMO, PALMITOS and SENAGAN. Growth Performance of Caulerpa lentillifera (Lato) in Lowered Seawater pH. Cebu: Philippine Science High School-Central Visayas Campus Talaytay, 2013.
PERRY R. A guide to the Marine plankton of Southern California. University of California, Los Angeles, 2003.
MURILLO Z. M., & SALAMANCA E. J. P. Effect of salinity on growth of the green alga Caulerpa sertularioides (Bryopsidales, Chlorophyta) under laboratory conditions. Hidrobiológica, 2016, 26 (2): 277-282. http://www.scielo.org.mx/pdf/hbio/v26n2/0188-8897-hbio-26-02-00277.pdf
Refbacks
- There are currently no refbacks.