Comparison of CDC Bottle Bioassay Test with WHO Standard Method for Assessment of Aedes Aegypti Susceptibility to Carbamates and Organophosphates Insecticides in Semarang, Indonesia

Muhammad Choirul Hidajat, Martini Martini, Nur Endah Wahyuningsih, Sayono, Ristiyanto, Triwibowo Ambar Garjito, Widiarti, Lasmiati, Sapto Prihasto Siswoko, Rima Tunjungsari Dyah Ayuningtyas, Ary Oktsari Yanti, Suharyo Hadisaputro


Dengue hemorrhagic fever (DHF) is still a public health problem globally, including Semarang, one of the dengue-endemic areas in Indonesia. Vector control using insecticides is the main choice. The continuous use of insecticides poses a threat of resistance. The WHO method has been used for insecticide evaluation for decades. Since 2019 Indonesia has adopted the CDC Bottle Bioassay method for resistance testing and the WHO method, which is still being used. This study aimed to compare resistance tests using the CDC Bottle Bioassay method and the WHO Impregnated paper. Aedes aegypti larvae and pupae were collected from 3 villages in Semarang City. The larvae are then rearing into adult mosquitoes for resistance testing. The WHO method test was carried out using the insecticide cypermethrin (0.05%) from the pyrethroid group and malathion (0.5%) from the organophosphate group. The CDC method test was carried out using cypermethrin 1X (10µg/bottle) + synergist Piperonyl Butoxide (PBO), as well as 1X malathion (50µg/bottle) and synergist SSS-tribulyphosphorotrithioate (DEF). Molecular tests were carried out by sequencing the VGSC and ACE1 genes. The resistance test to cypermethrin showed that the two methods showed the same results, namely resistance. The mortality rate using the WHO method in the villages of Patemon, Terboyo Wetan and, Kandri is 62.4% respectively; 30.0%; and 75.3%, while using the CDC method is 90%; 55.5%, and 84.7% and after the addition of PBO it became 96%; 71% and 93.3%. The status of resistance to malathion using the two methods showed different results. The WHO method's mortality rate was 91.7%, respectively; 86.7% and 81.7%, while using the CDC method of 98.3%, 96.7%, and 98.3%. The resistance mechanisms detected were metabolic and target site mutations.



Keywords: cypermethrin, malathion, Comparison CDC, WHO.



Full Text:



HSAN K., HOSSAIN M. M., SARWAR M. S., WILDER-SMITH A., and GOZAL D. Unprecedented Rise in Dengue Outbreaks in Bangladesh. The Lancet Infectious Diseases, 2019, 19(12): 1287.

SINGHI S. C. Severe Dengue: Developing a Universally Applicable Simple Prediction Model. Indian Journal of Pediatrics, 2018, 85(6): 413–414.

MAULA A. W., FUAD A., UTARINI A., and MAULA A. W. Ten-Years Trend of Dengue Research in Indonesia and South-East Asian Countries : A Bibliometric Analysis. Global Health Action, 2018, 11(1): 1–8.


SITI-FUTRI F. F., ROSILAWATI R., WAN K. L., CHEONG Y. L., NAZNI W. A., and LEE H. L. Status of Pyrethroid Resistance in Aedes (Stegomyia) Aegypti (Linneaus) from Dengue Hotspots in Klang Valley, Malaysia. Tropical Biomedicine, 2020, 37(1): 201-209.

RUEDA L. M. Pictorial Keys for the Identification of Mosquitoes (Diptera: Culicidae) Associated with Dengue Virus Transmission. 1st ed. Magnolia Press, Auckland, New Zealand, 2004.

SAYONO S., PUSPA A., HIDAYATI N., FAHRI S., SUMANTO D., DHARMANA E., HADISAPUTRO S., ASIH P. B. S., and SYAFRUDDIN D. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes Aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides. Public Library of Science One, 2016: 1–12.

MITCHELL S. N., RIGDEN D. J., DOWD A. J., LU F., WILDING C. S., WEETMAN D., DADZIE S., JENKINS A. M., REGNA K., BOKO P., DJOGBENOU L., MUSKAVITCH M. A. T., RANSON H., PAINE M. J. I., MAYANS O., and DONNELLY M. J. Metabolic and Target-Site Mechanisms Combine to Confer Strong DDT Resistance in Anopheles Gambiae. Public Library of Science One, 2014, 9(3): 1–10.

ELYAZAR I. R. F., HAY S. I., and BAIRD J. K. Malaria Distribution, Prevalence, Drug Resistance and Control in Indonesia. Advances in Parasitology, 2011, 74: 41-175.

SPARKS T. C., CROSSTHWAITE A. J., NAUEN R., BANBA S., CORDOVA D., EARLEY F., EBBINGHAUS-KINTSCHER U., FUJIOKA S., HIRAO A., KARMON D., KENNEDY R., NAKAO T., POPHAM H. J. R., SALGADO V., WATSON G. B., WEDEL B. J., and WESSELS F. J. Insecticides, Biologics and Nematicides : Updates to IRAC’s Mode of Action Classification - a Tool for Resistance Management. Pesticide Biochemistry and Physiology, 2020, 167: 1-10.

AIZOUN N, OSSE R, AZONDEKON R, ALIA R, OUSSOU O, GNANGUENON V, AIKPON R., PADONOU G. G., and AKOGBÉTO M. Comparison of the Standard WHO Susceptibility Tests and the CDC Bottle Bioassay for the Determination of Insecticide Susceptibility in Malaria Vectors and their Correlation with Biochemical and Molecular Biology Assays in Benin, West Africa. Parasites and Vectors, 2013, 6(1): 1–10.

MINISTRY OF HEALTH OF INDONESIA. Guidelines for Monitoring Vector Resistance to Insecticides. Ministry of health of Indonesia, Jakarta, Indonesia, 2018.


MINISTRY OF HEALTH OF INDONESIA. Environmental health quality standards and health requirements for vector and reservoir of diseases. Jakarta: 2017.

MINISTRY OF HEALTH OF INDONESIA. Guidelines for the Use of Insecticides (Pesticides) in Vector Control. Ministry of health of Indonesia, Jakarta, Indonesia, 2012.

SEMARANG CITY HEALTH OFFICE. Disease Prevention and Control Program Reports. Semarang City Health Office, Semarang, Indonesia, 2017.

SAYONO S., PUSPA A., HIDAYATI N., FAHRI S., SUMANTO D., DHARMANA E., HADISAPUTRO S., ASIH P. B. S., and SYAFRUDDIN D. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes Aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides. Public Library of Science One, 2016: 1–12.

SETIYANINGSIH R., WIDIARTI W., and LASMIATI L. Efikasi Larvasida Temephos Terhadap Aedes Aegypti Resisten Pada Berbagai Kontainer. Vektora, 2015, 7(1): 23–28.

BROGDON W. G., & ADELINE C. Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay. US-CDC Atlanta, Atlanta, USA, 2018.

WIDIASTUTI D., SUNARYO, PRAMESTUTI N., and MARTINI. Aktivitas Enzim Monooksigenase Pada Populasi Nyamuk Aedes Aegypti di Kecamatan Tembalang, Kota Semarang. Aspirator, 2015, 7(1): 1–6.

MARTINI, HESTININGSIH R., WIDJANARKO B., and PURWANTISARI S. Resistance of Aedes as a Vectors Potential for Dengue Hemorrhagic Fever (DHF) in Semarang City, Indonesia. Journal of Tropical Life Science, 2019, 9(1): 89–94.

SATHANTRIPHOP S., PAEPORN P., YA-UMPHAN P., MUKKHUN P., THANISPONG K., CHANSANG C., BANGS M. J., CHAREONVIRIYAPHAP T., and TAINCHUM K. Behavioral Action of Deltamethrin and Cypermethrin in Pyrethroid-Resistant Aedes Aegypti (Diptera: Culicidae): Implications for Control Strategies in Thailand. Journal of Medical Entomology, 2020;57(4):1157–67.

SUKANINGTYAS R, UDIJONO A, and MARTINI M. Praktik Penggunaan Insektisida Rumah Tangga di Are Buffer Pelabuhan Tanjung Emas Wilayah Kerja Kantor Kesehatan Pelabuhan Kelas II Semarang. Jurnal Kesehatan Masyarakat, 2020, 8(6): 746–751.

WIGATI R. A., & SUSANTI L. Hubungan Karakteristik Pengetahuan, Sikap dan Perilaku Masyarakat dalam Menggunakan Antinyamuk di Kelurahan Kutowinangun. Bul Penelit Kesehat, 2012, 40(3): 130-141.

KUSUMASTUTI N. H. Use of House Insecticide in Pangandaran Village. Widyariset, 2014, 3: 417–424.

OWUSU H. F., JANČÁRYOVÁ D., MALONE D., and MÜLLER P. Comparability between Insecticide Resistance Bioassays for Mosquito Vectors: Time to Review Current Methodology? Parasites and Vectors, 2015, 8(1): 1–11.

FONSECA-GONZÁLEZ I., CÁRDENAS R., QUIÑONES M. L., MCALLISTER J., and BROGDON W. G. Pyrethroid and Organophosphates Resistance in Anopheles (N.) Nuneztovari Gabaldón Populations from Malaria Endemic Areas in Colombia. Parasitology Research, 2009, 105(5).


  • There are currently no refbacks.