Comparison of DEMs Spatial Resolution for Geomorphological Study in a Small Volcanic Island of Tidore, North Maluku, Indonesia

Bachtiar W. Mutaqin, Muh Aris Marfai, Danang Sri Hadmoko, Helvetia Wijayanti, Franck Lavigne, Audrey Faral

Abstract

This article intends to examine the Digital Elevation Model (DEM) spatial resolution's effect in generating morphological information, i.e., slope, aspect, and curvature, in Tidore, a small volcanic island in the eastern part of Indonesia. We used a 1:50,000 scale of Indonesian topographic maps to generate the first DEM and the second DEM from a national DEM of Indonesia, which have a 0.27-arcsecond spatial resolution. Descriptive and statistical analysis has been used to compare both DEMs for each parameter. The results show that high-resolution DEM can better identify the morphological parameters in a small volcanic island of Tidore. However, not all parameters have a positive correlation with the DEM's. For example, slope and curvature positively connect with DEMs, while a negative value connects aspect or slope direction with the DEM.

 

 

Keywords: morphology, small islands, volcanic islands, Maluku, Indonesia.

 

 


Full Text:

PDF


References


XIONG L., TANG G., YANG X., and LI F. Geomorphology-Oriented Digital Terrain Analysis: Progress and Perspectives. Journal of Geographical Sciences, 2021, 31(3): 456-476. https://doi.org/10.1007/s11442-021-1853-9.

SINGH S., KUMAR K. V., and RAO M. J. Utilization of LiDAR DTM for Systematic Improvement in Mapping and Classification of Coastal Micro-Geomorphology. Journal of the Indian Society of Remote Sensing, 2020, 48(5): 805-816. https://doi.org/10.1007/s12524-020-01114-7.

ISWARI M. Y., & ANGGRAINI K. D. Model Digital Ketinggian Nasional untuk Aplikasi Kepesisiran. Oseana, 2018, 43(4): 68-80. https://doi.org/10.14203/oseana.2018.Vol.43No.4.2.

MUTAQIN B. W., LAVIGNE F., SUDRAJAT Y., HANDAYANI L., LAHITTE P., VIRMOUX C., HIDEN, HADMOKO D. S., KOMOROWSKI J. C., HANANTO N., WASSMER P., HARTONO, and BOILLOT-AIRAKSINEN K. Landscape Evolution on the Eastern Part of Lombok (Indonesia) Related to the 1257 CE Eruption of the Samalas Volcano. Geomorphology, 2019, 327: 338-350. https://doi.org/10.1016/j.geomorph.2018.11.010.

MALAWANI M. N., LAVIGNE F., and MUTAQIN B. W. Methodological Improvement for Reconstructing the Paleo-Topography of Lombok Island before the Samalas AD 1257 Eruption. Proceedings of the Geomorphometry 2020, 2020: 170-173. https://doi.org/10.30437/GEOMORPHOMETRY2020_46

MUTAQIN B. W. Spatial Analysis and Geomorphic Characteristics of Coral Reefs on the Eastern Part of Lombok, Indonesia. Geographia Technica, 2020, 15(2): 202-211. http://doi.org/10.21163/GT_2020.152.19

QURESHI J., & MAHMOOD S. A. Evaluation of DEM Based Neotectonics of Sulaiman Range and Lobe Region (SRLR), Balochistan-Pakistan. Earth Science Informatics, 2021, 14: 997-1012. https://doi.org/10.1007/s12145-021-00590-w

KIENZLE S. The Effect of DEM Raster Resolution on First Order, Second Order, and Compound Terrain Derivatives. Transactions in GIS (Geographic Information System), 2004, 8: 83–111. https://doi.org/10.1111/j.1467-9671.2004.00169.x.

ZHOU Q., & LIU X. Error Analysis in Grid-Based Slope and Aspect Algorithms. Photogrammetric Engineering and Remote Sensing, 2004, 70: 957–962. https://doi.org/10.14358/PERS.70.8.957

ZHOU Q., & CHEN Y. Generalization of DEM for Terrain Analysis Using a Compound Method. Photogrammetric Engineering and Remote Sensing, 2011, 66: 38–45. https://doi.org/10.1016/j.isprsjprs.2010.08.005

SHIH P. Evaluating the Information Loss of SRTM DEM Data with Different Grid Sizes. Journal of Surveying Engineering, 2014, 140. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000132

GROHMANN C. H. Effects of Spatial Resolution on Slope and Aspect Derivation for Regional-Scale Analysis. Computers & Geosciences, 2015, 77: 111-117. http://doi.org/10.1016/j.cageo.2015.02.003.

FARR T. G., ROSEN P. A., CARO E., CRIPPEN R., DUREN R., HENSLEY S., KOBRICK M., PALLER M., RODRIGUEZ E., ROTH L., SEAL D., SHAFFER S., SHIMADA J., UMLAND J., WERNER M., OSKIN M., BURBANK D., and ALSDORF D. The Shuttle Radar Topography Mission. Reviews of Geophysics, 2007, 45: 1-33. https://doi.org/10.1029/2005RG000183

REUTER H. I., HENGL T., GESSLER P., and SOILLE P. Chapter 4 Preparation of DEMs for Geomorphometric Analysis. Geomorphometry: Concepts, Software, Applications. Developments in Soil Science, 2009, 33: 87–120. https://doi.org/10.1016/S0166-2481(08)00004-4

GUO B., YANG F., WU H., ZHANG R., ZANG W., WEI C., JIANG G., MENG C., ZHAO H., ZHEN X., ZHANG D., and ZHANG H. How the Variations of Terrain Factors Affect the Optimal Interpolation Methods for Multiple Types of Climatic Elements? Earth Science Informatics, 2021, 14: 1021-1032. https://doi.org/10.1007/s12145-021-00609-2

BADAN INFORMASI GEOSPASIAL. The High-Resolution Indonesian Digital Elevation Model. 2018. http://tides.big.go.id/DEMNAS/

UNITED NATIONS. Regime of Islands. United Nations Convention on the Law of the Sea. 1982: 63. https://www.un.org/Depts/los/convention_agreements/texts/unclos/unclos_e.pdf

INDONESIAN GEOSPATIAL AGENCY. Geospasial Untuk Negeri. 2017. https://tanahair.indonesia.go.id/

STATISTICS INDONESIA. Luas Daerah dan Jumlah Pulau Menurut Provinsi, 2002-2016. Statistics Indonesia, Jakarta, Indonesia, 2017.

QIU H., REGMI A. D., CUI P., HU S., WANG Y., and HE Y. Slope Aspect Effects of Loess Slides and Its Spatial Differentiation in Different Geomorphologic Types. Arabian Journal of Geosciences, 2017, 10. https://doi.org/10.1007/s12517-017-3135-5

SUN D., WEN H., ZHANG Y., and XUE M. An Optimal Sample Selection-Based Logistic Regression Model of Slope Physical Resistance against Rainfall-Induced Landslide. Natural Hazards, 2021, 105: 1255–1279. https://doi.org/10.1007/s11069-020-04353-6

KHANIFAR J., & KHADEMALRASOUL A. Effects of Neighborhood Analysis Window Forms and Derivative Algorithms on the Soil Aggregate Stability – Landscape Modeling. Catena, 2020, 198. https://doi.org/10.1016/j.catena.2020.105071

HILDENBRAND A., MARQUES F.O., and CATALÃO J. Large-Scale Mass Wasting on Small Volcanic Islands Revealed by the Study of Flores Island (Azores). Scientific Reports, 2018, 8: 1-11. https://doi.org/10.1038/s41598-018-32253-0

WARD S.N., & DAY S. CumbreVieja Volcano - Potential Collapse and Tsunami at La Palma, Canary Islands. Geophysical Research Letters, 2001, 28: 3397–3400. https://doi.org/10.1029/2001GL013110

TEHRANIRAD B., HARRIS J.C., GRILLI A.R., GRILLI S.T., ABADIE S., KIRBY J.T., and SHI F. Far-Field Tsunami Impact in the North Atlantic Basin from Large Scale Flank Collapses of the CumbreVieja Volcano, La Palma. Pure ans Applied Geophysics, 2015, 172: 3589–3616. https://doi.org/10.1007/s00024-015-1135-5

CHAE B., PARK H., CATANI F., SIMONI A., and BERTI M. Landslide Prediction, Monitoring and Early Warning: A Concise Review of State-of-The-Art. Geosciences Journal, 2017, 21(6): 1033-1070. http://doi.org/10.1007/s12303-017-0034-4

RASHID B., IQBAL J., and SU L. Landslide Susceptibility Analysis of Karakoram Highway Using Analytical Hierarchy Process and Scoops 3D. Journal of Mountain Science, 2020, 17(7): 1596-1612. https://doi.org/10.1007/s11629-018-5195-8

HUANG C., LI Y., YI S., LIU K., and WU C. Characteristics and Failure Mechanism of an Ancient Earthquake-Induced Landslide with an Extremely Wide Distribution Area. Journal of Mountain Science, 2018, 15(2): 380-393. https://doi.org/10.1007/s11629-017-4527-4

MALAPERDAS G. D., & PANAGIOTIDIS V. V. The Aspects of Aspect: Understanding Land Exposure and Its Part in Geographic Information Systems Analysis. Energy & Environment, 2018, 29(6): 1022-1037. https://doi.org/10.1177/0958305X18766322

CHRISTOFF N., JORDA L., VISEUR S., BOULEY S., MANOLOVA A., and MARI J. Automated Extraction of Crater Rims on 3D Meshes Combining Artificial Neural Network and Discrete Curvature Labeling. Earth, Moon, and Planets, 2020, 124: 51-72. https://doi.org/10.1007/s11038-020-09535-7

NONOMURA A., HASEGAWA S., MATSUMOTO H., TAKAHASHIM., MASUMOTO M., and FUJISAWA K. Curvature Derived from LiDAR Digital Elevation Models as Simple Indicators of Debris-Flow Susceptibility. Journal of Mountain Science, 2019, 16: 95-107. https://doi.org/10.1007/s11629-018-5098-8

THOURET, J.-C. Volcanic Geomorphology — an Overview. Earth-Science Reviews, 1999, 47(1–2): 95-131. https://doi.org/10.1016/S0012-8252(99)00014-8

KERVYN M., KERVYN F., GOOSSENS R., ROWLAND S. K., and ERNST G. G. J. Mapping Volcanic Terrain Using High-Resolution and 3D Satellite Remote Sensing. Geological Society, London, Special Publications, 2007, 283: 5-30. https://doi.org/10.1144/SP283.2

NAPIERALSKI J., BARR I., KAMP U., and KERVYN M. Remote Sensing and GIScience in Geomorphological Mapping. Treatise on Geomorphology. Academic Press, San Diego, USA, 2013: 187–227. https://doi.org/10.1016/B978-0-12-374739-6.00050-6

VELMURUGAN A. Chapter 1 - The Nature and Characters of Tropical Islands. Biodiversity and Climate Change Adaptation in Tropical Islands, Academic Press, Cambridge, USA, 2008: 3-30. https://doi.org/10.1016/B978-0-12-813064-3.00001-6

CHAN H. P., CHANG C. P., LIN T. H., BLACKETT M., KUO-CHEN H., and LIN A. T. S. The Potential of Satellite Remote Sensing for Monitoring the Onset of Volcanic Activity on Taipei's Doorstep. International Journal of Remote Sensing. 2019, 41(4): 1372-1388. https://doi.org/10.1080/01431161.2019.1667549


Refbacks

  • There are currently no refbacks.