Spatial-Temporal Effect on Proximate, Trace Elements, Alginate, and Fucoxanthin Contents, of Sargassum Polycystum Brown Seaweed

I Ketut Sumandiarsa, Dietriech Geoffrey Bengen, Joko Santoso, Hedi Indra Januar


This article describes the environment’s new role in Sargassum polycystum brown seaweed's nutrition and metabolites production, based on locations as well as seasonal variation. These variations enable the discovery of environmental factors with the best influence on this production. In addition, the high precise proximate composition, trace elements, alginates, and fucoxanthin contents were obtained using spectroscopy, gravimetry, Nuclear Magnetic Resonance (1HNMR), and High-Performance Liquid Chromatography (HPLC). For example, this study illustrates the proposed method to optimize the environmental carrying capacity of waters on volcanic islands for high S. polycystum metabolite production. The study method allows for an improved understanding of carbohydrates encountering the most macro nutrition contents (36-48%) and manganese as the highest trace element (17.15-103.29 mg/kg). Furthermore, alginate characterization obtained 10.96 22.09%, 27.70-36.57%, 9.47-17.83%, 8.14-8.36, and 284.71-499.10 cPs of yield, ash, moisture, pH, and viscosity, respectively. Meanwhile, the M/G ratio reached 0.35-0.84 and 0.155-0.587 mg/g of fucoxanthin. The metabolites variations between location and season were significantly influenced by nitrate, ammonia, DO, and salinity for the alginate, while fucoxanthin's counterparts were temperature, pH, and copper. Subsequently, the new method's effectiveness was evaluated by statistical calculation of canonical correspondence multivariate analysis. The study results provide improved suggestions on the environment condition's ability to support S. polycystum development in small island waters. They are also a fair consideration of Sargassum brown seaweed aquaculture development program in Indonesia.



Keywords: water quality, Sargassum polycystum, trace elements, alginate, fucoxanthin.




Full Text:



SETYAWIDATI N. A. R., PUSPITA M., KAIMUDDIN A. H., WIDOWATI I., DESLANDES E., and BOURGUIGNON N. Seasonal Biomass and Alginate Stock Assessment of Three Abundant Genera of Brown Macroalgae Using Multispectral High-Resolution Satellite Remote Sensing: A Case Study at Ekas Bay (Lombok, Indonesia). Mar Pollution Bulletin, 2018, 131: 40-48.

PUGLISI M. P., SNEED J. M., SHARP K. H., RITSON-WILLIAMS R., and PAUL V. J. Marine Chemical Ecology In Benthic Environments. Nat Prod Rep, 2014, 31(11): 1510–1553.

FERTAH M. Isolation and Characterization of Alginate from Seaweed. Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications. Elsevier Inc., Amsterdam, The Netherlands, 2017: 11-26.

FLÓREZ-FERNÁNDEZ N., DOMÍNGUEZ H., and TORRES M. D. A Green Approach for Alginate Extraction From Sargassum Muticum Brown Seaweed Using Ultrasound-Assisted Technique. Int J Biol Macromol, 2019, 124: 451-459.

JACOBSEN C., SØRENSEN A.-D. M., HOLDT S. L., AKOH C. C., and HERMUND D. B. Source, Extraction, Characterization, and Applications of Novel Antioxidants from Seaweed. Annual Review Food Science Technology, 2019, 10(1): 541-568.

JOHNSON M., KANIMOZHI S. A., JOY JEBA MALAR T. R., SHIBILA T., FREITAS P. R., and TINTINO S. R. The Antioxidative Effects of Bioactive Products from Sargassum Polycystum C. Agardh and Sargassum Duplicatum J. Agardh Against Inflammation and Other Pathological Issues. Complementary Therapies in Medicine, 2019, 46: 19-23.

REBOLEIRA J., FREITAS R., PINTEUS S., SILVA J., ALVES C., and PEDROSA R. Brown Seaweeds. Nonvitamin and Nonmineral Nutritional Supplements. Academic Press, 2018: 171-176.

PETEIRO C. Alginate Production from Marine Macroalgae, with Emphasis on Kelp Farming. Alginates and Their Biomedical Applications. Springer Nature Singapore Pte Ltd., Singapore, 2018: 27-66.

PRAIBOON J., PALAKAS S., NOIRAKSA T., and MIYASHITA K. Seasonal Variation in Nutritional Composition and Anti-Proliferative Activity of Brown Seaweed, Sargassum Oligocystum. J Appl Phycol, 2018, 30(1): 101-111.

JENSEN H. M., LARSEN F. H., and ENGELSEN. Characterization of Alginates by Nuclear Magnetic Resonance (NMR) and Vibrational Spectroscopy (IR, NIR, Raman) in Combination with Chemometrics. Natural Products From Marine Algae: Methods and Protocols. Humana Press, Totowa, USA, 2015: 347-363.

KOK J. M.-L., & WONG C.-L. Physicochemical Properties of Edible Alginate Film from Malaysian Sargassum Polycystum C. Agardh. Sustain Chem Pharm, 2018, 9: 87-94.

HERNÁNDEZ-CARMONA G., FREILE-PELEGRÍN Y., and HERNÁNDEZ-GARIBAY E. Conventional and Alternative Technologies for the Extraction of Algal Polysaccharides. Functional Ingredients from Algae for Foods and Nutraceuticals. Woodhead Publishing Limited, Sawston, UK, 2013: 475-516.

KAWEE-AI A., KUNTIYA A., and KIM S. M. Anticholinesterase and Antioxidant Activities of Fucoxanthin Purified from the Microalga Phaeodactylum Tricornutum. Nat Prod Commun, 2013, 8(10): 1381-1386.

HAMMER Ø. Paleontological Statistics Reference Manual. Natural History Museum University of Oslo, Oslo, Norwegia, 2020.

SUTHAR P., GAJARIA T. K., and REDDY C. R. K. Production of Quality Seaweed Biomass through Nutrient Optimization for the Sustainable Land-Based Cultivation. Algal Research, 2019, 42.

WANG H., WANG G., and GU W. Macroalgal Blooms Caused by Marine Nutrient Changes Resulting from Human Activities. Journal of Applied Ecology, 2020, 57(4): 766-776.

JANUAR H. I., CHASANAH E., TAPIOLAS D. M., MOTTI C. A, LIPTROT C. H., and WRIGHT A. D. Influence of Anthropogenic Pressures on the Bioactivity Potential of Sponges and Soft Corals in the Coral Reef Environment. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 2015, 10(2): 51-9.

LARTIGUE J., & SHERMAN T. D. Response of Enteromorpha sp. (Chlorophyceae) to a Nitrate Pulse: Nitrate Uptake, Inorganic Nitrogen Storage and Nitrate Reductase Activity. Marine Ecology Progress Series, 2005, 292(3): 147-157.

FERNAND F, ISRAEL A., SKJERMO J., WICHARD T., TIMMERMANS K. R., and GOLBERG A. Offshore Macroalgae Biomass for Bioenergy Production: Environmental Aspects, Technological Achievements and Challenges. Renewable and Sustainable Energy Reviews, 2017, 75: 35-45.

SCHMID M, GUIHÉNEUF F., and STENGEL D. B. Ecological and Commercial Implications of Temporal and Spatial Variability in the Composition of Pigments and Fatty Acids in Five Irish Macroalgae. Marine Biology, 2017, 164(8): 1-18.

IMCHEN T., & EZAZ W. Time Course Nutrient Uptake Study of Some Intertidal Rocky Shore Macroalgae and the Limiting Effect Due to Synergistic Interaction. Indian Journal of Geo-Marine Sciences, 2020, 49(2): 287-292.

LALEGERIE F., GAGER L., STIGER-POUVREAU V., and CONNAN S. The Stressful Life of Red and Brown Seaweeds on the Temperate Intertidal Zone: Effect of Abiotic and Biotic Parameters on the Physiology of Macroalgae And Content Variability of Particular Metabolites. Advances in Botanical Research, 2020, 95: 247-287.

CHEN S., XU K., JI D., WANG W., XU Y., and CHEN C. Release of Dissolved and Particulate Organic Matter by Marine Macroalgae and Its Biogeochemical Implications. Algal Research, 2020, 52.

LIU Y., NOT C., JIAO J. J., LIANG W., and LU M. Tidal Induced Dynamics and Geochemical Reactions of Trace Metals (Fe, Mn, And Sr) in The Salinity Transition Zone of an Intertidal Aquifer. Sci Total Environ, 2019, 664: 1133-1149.

LIU R., MEN C., LIU Y., YU W., XU F., and SHEN Z. Spatial Distribution and Pollution Evaluation of Heavy Metals in Yangtze Estuary Sediment. Mar Pollut Bulletin, 2016, 110(1): 564-571.

LIU F., LIU X., WANG Y., JIN Z., MOEJES F. W., and SUN S. Insights on the Sargassum Horneri Golden Tides in the Yellow Sea Inferred from Morphological and Molecular Data. Limnology and Oceanography, 2018, 63(4): 1762-1773.

CONNAN S., & STENGEL D. B. Impacts of Ambient Salinity and Copper on Brown Algae: 1. Interactive Effects on Photosynthesis, Growth, and Copper Accumulation. Aquat Toxicol, 2011, 104(1–2): 94–107.

HOANG T. C., COLE A. J., FOTEDAR R. K., O’LEARY M. J., LOMAS M. W., and ROY S. Seasonal changes in water quality and Sargassum biomass in southwest Australia. Mar Ecol Prog Ser. 2016, 551: 63-79.

ELSER J. J., BRACKEN M. E. S., CLELAND E. E., GRUNER D. S., HARPOLE W. S., and HILLEBRAND H. Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems. Ecology Letters, 2007, 10(12): 1135-1142.;jsessionid=777AEA4281B69738E3225809244A174F?sequence=1

MATANJUN P., MOHAMED S., MUSTAPHA N. M., and MUHAMMAD K. Nutrient Content of Tropical Edible Seaweeds, Eucheuma Cottonii, Caulerpa Lentillifera and Sargassum Polycystum. Journal of Applied Phycology, 2009, 21(1): 75-80.

PERUMAL B., CHITRA R., MARUTHUPANDIAN A., and VIJI M. Nutritional Assessment and Bioactive Potential of Sargassum Polycystum C. Agardh (Brown Seaweed). Indian Journal of Geo-Marine Sciences, 2019, 48(4): 492-498.

BALBOA E. M., GALLEGO-FÁBREGA C., MOURE A., and DOMÍNGUEZ H. Study of the Seasonal Variation on Proximate Composition of Oven-Dried Sargassum Muticum Biomass Collected in Vigo Ria, Spain. Jounal of Applied Phycology, 2016, 28(3): 1943-1953.

BAWEJA P., KUMAR S., SAHOO D., and LEVINE I. Biology of Seaweeds. Seaweed in Health and Disease Prevention. Elsevier Inc., Amsterdam, The Netherlands, 2016: 41-106.

MALEA P., CHATZIAPOSTOLOU A., and KEVREKIDIS T. Trace Element Seasonality in Marine Macroalgae of Different Functional-Form Groups. Marine Environmental Research, 2015, 103: 18-26.

CIRCUNCISÃO A. R., CATARINO M. D., CARDOSO S. M., and SILVA A. M. S. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Marine Drugs, 2018, 16(11).

DIHARNINGRUM I. M., & HUSNI A. Metode Ekstraksi Jalur Asam Dan Kalsium Alginat Berpengaruh Pada Mutu Alginat Rumput Laut Cokelat Sargassum Hystrix J. Agardh. Jurnal Pengolah Has Perikan Indones, 2018, 21(3): 532 542.

ANWAR F., DJUNAEDI A., and SANTOSA G. W. Pengaruh Konsentrasi KOH yang Berbeda Terhadap Kualitas Alginat. Journal of Marine Reseraches, 2013, 2(1): 7-14.

RHEIN-KNUDSEN N., ALE M. T., AJALLOUEIAN F., and MEYER A. S. Characterization of Alginates From Ghanaian Brown Seaweeds: Sargassum Spp. and Padina Spp. Food Hydrocolloids, 2017, 71: 236-244.

SARASWATHI S. J., BABU B., and RENGASAMY R. Seasonal Studies on the Alginate And Its Biochemical Composition I: Sargassum Polycystum (Fucales), Phaeophyceae. Phycological Research, 2003, 51(4): 240-243.

DHARMAYANTI N., SUPRIATNA J., ABINAWANTO, and YASMAN Y. Isolation and Partial Characterization of Alginate Extracted from Sargassum Polycystum Collected from Three Habitats in Banten, Indonesia. Biodiversitas, 2019, 20(6): 1776-1785.

STIGER-POUVREAU V., BOURGUIGNON N., and DESLANDES E. Carbohydrates from Seaweeds. Seaweed in Health and Disease Prevention. Elsevier Inc., Amsterdam, The Netherlands, 2016: 223-274.

MOHAMMED A., RIVERS A., STUCKEY D. C., and WARD K. Alginate Extraction from Sargassum Seaweed in the Caribbean Region: Optimization Using Response Surface Methodology. Carbohydrate Polymers, 2020, 245: 1-8.

ARDALAN Y., JAZINI M., and KARIMI K. Sargassum Angustifolium Brown Macroalga as a High Potential Substrate for Alginate and Ethanol Production with Minimal Nutrient Requirement. Algal Research, 2018, 36: 29-36.

KUMAR A., BUIA M. C., PALUMBO A., MOHANTY M., WADAAN M. A. M, and HOZZEIN W. N. Ocean Acidification Affects Biological Activities of Seaweeds: A Case Study of Sargassum Vulgare from Ischia Volcanic CO2 Vents. Environmental Pollution, 2020, 259.

BERTAGNOLLI C., ESPINDOLA A. P. D. M., KLEINÜBING S. J., TASIC L., and SILVA M. G. C. Sargassum Filipendula Alginate from Brazil: Seasonal Influence and Characteristics. Carbohydrate Polymers, 2014, 111: 619-623.

RAJAURIA G., FOLEY B., and ABU-GHANNAM N. Characterization of Dietary Fucoxanthin from Himanthalia Elongata Brown Seaweed. Food Res Int, 2017, 99: 995-1001.

KRAAN S. Pigments and Minor Compounds in Algae. Functional Ingredients from Algae for Foods and Nutraceuticals. Woodhead Publishing Limited, Sawston, UK, 2013: 205-251.

TERASAKI M., KAWAGOE C., ITO A., KUMON H., NARAYAN B., and HOSOKAWA M. Spatial and Seasonal Variations in the Biofunctional Lipid Substances (Fucoxanthin and Fucosterol) of The Laboratory-Grown Edible Japanese Seaweed (Sargassum Horneri Turner) Cultured in the Open Sea. Saudi Journal of Biol Sciences, 2017, 24(7): 1475-1482.

MIYASHITA K., BEPPU F., HOSOKAWA M., LIU X., and WANG S. Nutraceutical Characteristics of The Brown Seaweed Carotenoid Fucoxanthin. Archives of Biochemistry and Biophysics, 2020, 686: 1-10.

BI Y., FENG M., ZHANG Y., LIANG J., and WANG W. Spatial Distribution Patterns of Sargassum Horneri in the Coastal Waters of the Ma’an Archipelago. Acta Ecologica Sinica, 2018, 38(2): 173-178.

SUN X., LIU Z., JIANG Q., and YANG Y. Concentrations of Various Elements in Seaweed and Seawater from Shen’ao Bay, Nan’ao Island, Guangdong Coast, China: Environmental Monitoring and the Bioremediation Potential of the Seaweed. Science of the Total Environment, 2019, 659: 632-639.



  • There are currently no refbacks.