Some Properties of the Scaled Burt Matrix on Multiple Correspondence Analysis

Udjianna Sekteria Pasaribu, Karunia Eka Lestari, Sapto Wahyu Indratno, Hanni Garminia, R. R. Kurnia Novita Sari

Abstract

Multiple correspondence analysis (MCA) is well-known in statistics as a data analysis technique for multiple categorical variables. This method detects and represents underlying structures in a data set by representing data as points in a low-dimensional space. MCA is performed by applying the simple correspondence analysis (CA) algorithm to either an indicator matrix or a Burt matrix formed from these variables. Furthermore, the Burt matrix is scaled and undertaken eigendecomposition to get coordinates, which depicts the association's nature among variables. This study re-proposed the scale matrix of the Burt matrix, whose elements are the scale values of the categories of a variable, then so-called the scaled Burt matrix. While some researchers are interested in many MCA applications, we convenient our attention to exploring the properties of the scaled Burt matrix from a matrix algebraic perspective. These properties are derived mathematically to investigate the link between the Burt matrix and its scale matrix in representing the variables' associations.

 

 

Keywords: Burt matrix, categorical data analysis, indicator matrix, multiple correspondence analysis, scale matrix.

 

 


Full Text:

PDF


References


HJELLBREKKE J. Multiple correspondence analysis for the social sciences. Taylor & Francis Group, London, 2019.

BEH E. J., & LOMBARDO R. Multiple and multi-way correspondence analysis. Advanced Review, 2019, 11(5): 1-11. https://doi.org/10.1002/wics.1464

YANG Y., POUYANFAR S., and TIAN H. IF-MCA: importance factor-based multiple correspondence analysis formultimedia data analytics. IEEE Transactions on Multimedia, 2018, 20: 1024-1032. https://doi.org/10.1109/TMM.2017.2760623

GOODWILL A., & MELOY J. R. Visualizing the relationship among indicators for lone actor terrorist attacks: multidimensional scaling ang the TRAP-18. Behavioral Sciences & the Law, 2019, 37(5): 522-539. https://doi.org/10.1002/bsl.2434

LESTARI K. E., PASARIBU U. S., INDRATNO S. W., and GARMINIA H. The reliability of crash car protection level based on the circle confidence region on the correspondence plot. IOP Conference Series: Materials Science and Engineering, 2019, 598: 012061. https://doi.org/10.1088/1757-899X/598/1/012061

GREENACRE M. J. Use of correspondence analysis in clustering a mixed-scale data set with missing data. Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, 2019. https://doi.org/10.13140/RG.2.2.23439.43684

YUDHANEGARA M. R., & LESTARI K. E. Clustering for multi-dimensional data set: a case study on educational data. Journal of Physics: Conference Series, 2019, 1280: 042025. https://doi.org/10.1088/1742-6596/1280/4/042025

ROVAN V. U., & ROVAN J. An exploration of diabetic foot screening procedures data by a multiple correspondence analysis. Slovenian Journal of Public Health, 2017, 56: 65-73. https://doi.org/10.1515/sjph-2017-0009

FRED R. M., MWAURA F., OGWAL F., MASIGA M., AKULLO M., and OKURUT T. O. Mitigating impacts of projects on biodiversity conservation in Uganda. Journal of Ecosystem and Ecography, 2017, 7: 232-235. https://doi.org/10.4172/2157-7625.1000232

BRUNETTE M., BOURKE R., HANEWINKEL M., and YOUSEFPOUR R. Adaptation to climate change in forestry: a multiple correspondence analysis. Forests, 2018, 9(1): 20. https://doi.org/10.3390/f9010020

BEH E. J., & LOMBARDO R. Multiple and multi-way correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2019, 11(5): e1464. https://doi.org/10.1002/wics.1464

LESTARI K. E., PASARIBU U. S., INDRATNO S. W., and GARMINIA H. Generating roots of cubic polynomials by Cardano’s approach on correspondence analysis. Heliyon, 2020, 6(6): e03998. https://doi.org/10.1016/j.heliyon.2020.e03998

LESTARI K. E., PASARIBU U. S., INDRATNO S. W., and GARMINIA H. The comparative analysis of dependence for three-way contingency table using Burt matrix and Tucker3 in correspondence analysis. Journal of Physics: Conference Series, 2019, 1245: 012056. https://doi.org/10.1088/1742-6596/1245/1/012056

LESTARI K. E., PASARIBU U. S., and INDRATNO S. W. Graphical depiction of three-way association in contingency table using higher-order singular value decomposition Tucker3. Journal of Physics: Conference Series, 2019, 1280: 022035. https://doi.org/10.1088/1742-6596/1280/2/022035

UNITED STATES BUREAU OF LABOR STATISTICS. http://www.bls.gov/


Refbacks

  • There are currently no refbacks.