Some Properties of the Scaled Burt Matrix on Multiple Correspondence Analysis
Abstract
Keywords: Burt matrix, categorical data analysis, indicator matrix, multiple correspondence analysis, scale matrix.
Full Text:
PDFReferences
HJELLBREKKE J. Multiple correspondence analysis for the social sciences. Taylor & Francis Group, London, 2019.
BEH E. J., & LOMBARDO R. Multiple and multi-way correspondence analysis. Advanced Review, 2019, 11(5): 1-11. https://doi.org/10.1002/wics.1464
YANG Y., POUYANFAR S., and TIAN H. IF-MCA: importance factor-based multiple correspondence analysis formultimedia data analytics. IEEE Transactions on Multimedia, 2018, 20: 1024-1032. https://doi.org/10.1109/TMM.2017.2760623
GOODWILL A., & MELOY J. R. Visualizing the relationship among indicators for lone actor terrorist attacks: multidimensional scaling ang the TRAP-18. Behavioral Sciences & the Law, 2019, 37(5): 522-539. https://doi.org/10.1002/bsl.2434
LESTARI K. E., PASARIBU U. S., INDRATNO S. W., and GARMINIA H. The reliability of crash car protection level based on the circle confidence region on the correspondence plot. IOP Conference Series: Materials Science and Engineering, 2019, 598: 012061. https://doi.org/10.1088/1757-899X/598/1/012061
GREENACRE M. J. Use of correspondence analysis in clustering a mixed-scale data set with missing data. Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, 2019. https://doi.org/10.13140/RG.2.2.23439.43684
YUDHANEGARA M. R., & LESTARI K. E. Clustering for multi-dimensional data set: a case study on educational data. Journal of Physics: Conference Series, 2019, 1280: 042025. https://doi.org/10.1088/1742-6596/1280/4/042025
ROVAN V. U., & ROVAN J. An exploration of diabetic foot screening procedures data by a multiple correspondence analysis. Slovenian Journal of Public Health, 2017, 56: 65-73. https://doi.org/10.1515/sjph-2017-0009
FRED R. M., MWAURA F., OGWAL F., MASIGA M., AKULLO M., and OKURUT T. O. Mitigating impacts of projects on biodiversity conservation in Uganda. Journal of Ecosystem and Ecography, 2017, 7: 232-235. https://doi.org/10.4172/2157-7625.1000232
BRUNETTE M., BOURKE R., HANEWINKEL M., and YOUSEFPOUR R. Adaptation to climate change in forestry: a multiple correspondence analysis. Forests, 2018, 9(1): 20. https://doi.org/10.3390/f9010020
BEH E. J., & LOMBARDO R. Multiple and multi-way correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2019, 11(5): e1464. https://doi.org/10.1002/wics.1464
LESTARI K. E., PASARIBU U. S., INDRATNO S. W., and GARMINIA H. Generating roots of cubic polynomials by Cardano’s approach on correspondence analysis. Heliyon, 2020, 6(6): e03998. https://doi.org/10.1016/j.heliyon.2020.e03998
LESTARI K. E., PASARIBU U. S., INDRATNO S. W., and GARMINIA H. The comparative analysis of dependence for three-way contingency table using Burt matrix and Tucker3 in correspondence analysis. Journal of Physics: Conference Series, 2019, 1245: 012056. https://doi.org/10.1088/1742-6596/1245/1/012056
LESTARI K. E., PASARIBU U. S., and INDRATNO S. W. Graphical depiction of three-way association in contingency table using higher-order singular value decomposition Tucker3. Journal of Physics: Conference Series, 2019, 1280: 022035. https://doi.org/10.1088/1742-6596/1280/2/022035
UNITED STATES BUREAU OF LABOR STATISTICS. http://www.bls.gov/
Refbacks
- There are currently no refbacks.