Serious Video Games to Keep the Functional Autonomy in Elderly: A Systematic Revision

Yanneth Saavedra Castelblanco, Mauro Callejas-Cuervo, Andrea Catherine Alarcon-Aldana

Abstract

The use of video games and motion capture systems to maintain functional autonomy in older people is becoming increasingly significant, as they contribute to improving quality of life. The objective was to carry out a systematic review to identify the usefulness of serious video games in maintaining functional autonomy in older adults and to understand the technologies used for the analysis of their movements and the body parts that have been worked on in order to maintain functionality in the performance of their instrumental activities of daily living. The systematic review was based on the criteria proposed by the PRISMA method, and searches were carried out using the following databases: Scopus, PubMed, and IEEEXplore. In the basic search, criteria such as the use of video games, motion capture technologies, and functional autonomy in older adults were taken into account. The search was limited to open access publications published in the period 2015 to 2023, and 153 documents were analyzed, leaving 91; subsequently, 62 that did not meet the inclusion criteria were eliminated, ending with 30 articles that were directly related to the study topic. Among the findings, it was found that the creation of serious video games for older adults was aimed at multiple fields where commercial technologies prevail, which, due to their low cost, allows the interaction and implementation of gamified activities to improve the quality of life of older adults. Therefore, the work reported on the use of inertial measurement units was 12%, using the Microsoft Kinect sensor 70%, and other technologies 18%. All of these were used as motion capture systems. On the other hand, the two video games reported in the aforementioned articles showed that 20% were commercial products, whereas 80% were self-developed. The novelties that emerged through the analysis of research work were the report of a large number of studies, 70% of which focused on the objective of maintaining balance, coordination, strength, and psychophysiological postural parameters in the elderly, and the additional 30% corresponded closely to the field of physical rehabilitation. Additionally, the implementation of serious video games in older adults allows for active participation in physical activity, leaving aside conventional methods. Therefore, improvements are given from the creation of serious video games and application of mini-games, taking into account the individuality of each adult, as well as the needs, interests, and capacities, thereby achieving mental, emotional, and social balance.

 

Keywords: elderly; serious video games; exergames; functional autonomy

 

https://doi.org/10.55463/issn.1674-2974.51.8.8

 


Full Text:

PDF


References


MUÑOZ J., VILLADA J., GIRALDO J. Exergames: una herramienta tecnológica para la actividad física. Revista Médica de Risaralda, 2013, 19(2): 126-130. https://doi.org/10.22517/25395203.8527.

WORLD HEALTH ORGANIZATION: WHO. Envejecimiento y salud. (2022, 1 octubre). https://www.who.int/es/news-room/fact-sheets/detail/ageing-and-health.

SOUSA L., VILAR M., & SIMÕES M. Inventario de avaliação funcional de adultos e idosos (IAFAI). Manual técnico. Coimbra: Laboratório de Avaliação Psicológica e Psicometria/ FPCE-UC, 2013. https://www.researchgate.net/publication/283089066_Inventario_de_Avaliacao_Funcional_de_Adultos_eIdosos_IAFAI.

BOECHAT F., DE SOUZA VALE R. G., & DANTAS E. Evaluación de la autonomía funcional de ancianos con EPOC mediante el protocolo GDLAM. Revista Española de Geriatría y Gerontología, 2007, 42: 251-253. http://dx.doi.org/10.1001/ jama.290.17.230 1.

GARCÍA J., FELIX K., & LORENZO E. Serious Games to Improve the Physical Health of the Elderly: A Categorization Scheme. CENTRIC 2011: The Fourth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services, 64-71.

TAYLOR M., MCCORMICK D., SHAWIS T., IMPSON, R., & GRIFFIN M. Activity-promoting gaming systems in exercise and rehabilitation. Journal of Rehabilitation Research & Development, 2011, 48(10): 1171-1186. https://doi.org/10.1682/JRRD.2010.09.0171

YEPES J., URRUTIA G., ROMERO M., & FERNÁNDEZ S. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 2021, 74(9): 790-799. https://doi.org/10.1016/j.recesp.2021.06.016

PALESTRA, G., REBIAI, M., COURTIAL, E., GIOKAS, K., & KOUTSOURIS, D. A Fall Prevention System for the Elderly: Preliminary Results. Proceedings of the IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), Thessaloniki, Greece, 2017: 550-551, https://doi.org/10.1109/CBMS.2017.130

SOANCATL V., VAN DE GRONDE J., LAMOTH C., MAURITS, N., & ROERDINK J. Assessing Dynamic Balance Performance During Exergaming Based on Speed and Curvature of Body Movements. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society, 2018, 26(1): 171–180. https://doi.org/10.1109/TNSRE.2017.2769701.

. JINHUI L., ERDT M., CHONG BON LEE J., VIJAYAKUMAR H., ROBERT C., & THENG L. Diseño de un sistema de juegos de fitness digital para adultos mayores en entornos comunitarios. Conferencia internacional sobre Cyberworlds (CW) de 2018, Singapur. https://doi.org/10.1109/CW.2018.00061.

. KLAEBO E, VEREIJKEN B., BACH K., & HARALD J. Assessment of Machine Learning Models for Classification of Movement Patterns During a Weight-Shifting Exergame, IEEE Transactions Human-Machine Systems, 202151(3), 242-252. https://dblp.org/db/journals/thms/thms51.html.

KATAJAPU, N., LUIMULA M., LENG Y, PHAT T., JINHUI L., & PYAE A. Beneficios del ejercicio exergame sobre el funcionamiento físico de las personas mayores, octava Conferencia Internacional (2017). IEEE sobre Infocomunicaciones Cognitivas (CogInfoCom), Debrecen, Hungría, 2017: 000085-000090, https://doi.org10.1109/CogInfoCom2017.8268221.

CHACHA F., PUNIN C, BARZALLO B., HUERTA, & BERMEO, J. Uso de videojuegos para dinámicas de rehabilitación funcional de miembros superiores en adultos mayores, edad avanzada y adultos mayores. Proceedings of the 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), Cuenca, Ecuador, 2018: 1-5, https://doi:10.1109/ETCM.2018.8580307.

CAMPELO A., & KATZ, L. Older Adults’ Perceptions of the Usefulness of Technologies for Engaging in Physical Activity: Using Focus Groups to Explore Physical Literacy. International Journal Environmental Research and Public Health, 2020, 17(4): 1144. https://doi.org/10.3390/ijerph17041144A.

DA SILVA JÚNIOR J. L. A., BIDUSKI D., BELLEI E. A., BECKER O. H. C., DAROIT L., PASQUALOTTI A., FILHO H. T., & DE MARCHI A. C. B. A bowling exergame to improve functional capacity in older adults: Co-Design, development, and testing to compare the progress playing alone versus playing with peers. JMIR serious games, 2021, 9(1): e23423. https://doi.org/10.2196/23423.

GÓMEZ C, VALLEJO D, CORREGIDOR A., RODRÍGUE M, MARTÍN J., SCHEZ S, & POLONIO B. A Platform Based on Personalized Exergames and Natural User Interfaces to Promote Remote Physical Activity and Improve Healthy Aging in Elderly People. Sustainability, 2021, 13(14): 7578. https://doi.org/10.3390/su13147578

TROMBINI M, FERRARO F, MORANDO M, REGESTA G, & DELLEPIANE S. A Solution for the Remote Care of Frail Elderly Individuals via Exergames. Sensors, 2021, 21(8): 2719. https://doi.org/10.3390/s21082719.

CHEN C. TSAI T., LIN Y., LIN, C., HSU S., CHUNG, C., PEI, Y., & WONG, A. M. Acceptance of different design exergames in elders. PLOS One, 2018, 13(7): e0200185. https://doi.org/10.1371/journal.pone.0200185.

MARTEL D., LAUZÉ M., AGNOUX A., DE LACLOS L. F., DAOUST R., ÉMOND M., SIROIS, M., & AUBERTIN‐LEHEUDRE, M. Comparing the effects of a home-based exercise program using a gerontechnology to a community-based group exercise program on functional capacities in older adults after a minor injury. Experimental Gerontology, 2018, 108: 41-47, https://doi.org/10.1016/j.exger.2018.03.016.

GONZÁLEZ J., JAHOUH M., GONZÁLEZ J., MIELGO J., FERNÁNDEZ D, & SOTO R. Influence of the Use of Wii Games on Physical Frailty Components in Institutionalized Older Adults. International Journal of Environmental Research and Public Health, 2021, 18(5): 2723. https://doi.org/10.3390/ijerph18052723.

LAPIERRE N., DIN N., IGOUT M., CHEVRIER J., & BELMIN J. Effects of a rehabilitation programme using patient-personalised exergame on fear of falling and risk of falls in vulnerable older adults: Protocol of a randomised controlled group study (Preprint). JMIR Research Protocols, 2020. https://doi.org/10.2196/24665.

GARCÍA J., SCHOENE D., LORD S. R., DELBAERE K., VALENZUELA T., & NAVARRO K. F. A. Bespoke Kinect Stepping Exergame for Improving Physical and Cognitive Function in Older People: A Pilot Study. Games for Health Journal, 2016, 5(6): 382-388. https://doi.org/10.1089/g4h.2016.0070.

HENRIQUE P., COLUSSI E., & DE MARCHI A. Efectos de Exergame en el equilibrio de los pacientes y la función motora de las extremidades superiores después de un accidente cerebrovascular: un ensayo controlado aleatorio. Revista de accidentes cerebrovasculares y enfermedades cerebrovasculares, 2019, 28(8): 2351–2357 https: //doi.org/10.1016/j.jstrokecerebrovasdis.2019.05.031.

BIESEK S., VOJCIECHOWSKI A., FILHO J., DE MENEZES FERREIRA A., BORBA V. RABITO E., & GOMES A. Effects of exergames and protein supplementation on body composition and musculoskeletal function of prefrail Community-Dwelling Older women: a randomized, controlled clinical trial. International Journal of Environmental Research and Public Health, 2021, 18(17): 9324. https://doi.org/10.3390/ijerph18179324.

YALFANI A., ABEDI M., & RAEISI Z. Effects of an 8-Week virtual reality training program on pain, fall risk, and quality of life in elderly women with chronic low back pain: Double-Blind randomized clinical trial. Games for Health Journal, 2022, 11(2): 85-92. https://doi.org/10.1089/g4h.2021.0175.

KHIZHNIKOVA A.E., KLOCHKOV A.S., FUKS A.A., KOTOV-SMOLENSKIY A.M., SUPONEVA N.A., & PIRADOV M.A. Effects of virtual reality exergame on psychophysiological and postural disorders in elderly patients. Bulletin of the RGMU, 2021, 6: 58-65. https://doi.org/10.24075/vrgmu.2021.058

BABADI S., & DANESHMANDI H. Effects of virtual reality versus conventional balance training on balance of the elderly. Experimental Gerontology, 2021, 153: 111498. https://doi.org/10.1016/j.exger.2021.111498.

JINHUI L., XUEXIN X., PHAM T., THENG Y., KATAJAPU N., & LUIMULA M. ExerGames Designed for Older Adults: A Pilot Evaluation on Psychosocial Well-Being. Games for Health Journal, 2017, 6(6): 371-378. https://doi.org/10.1089/g4h.2017.0072.

LABRA F., & MAHECHA S. Efecto de un programa de “exergames” en el equilibrio y la movilidad funcional de personas mayores. Un estudio piloto. Revista Médica de Risaralda, 2020, 26(1): 17-22. https://doi.org/10.22517/25395203.24081.

MARKAIDA I., IRAURGI I., MARQUÉS N., AMAYRA I., & MARTÍNEZ S. Effect of the WII Sports Resort on the improvement in attention, processing speed and working memory in moderate stroke. Journal of Neuroengineering and Rehabilitation, 2019, 16(1): 32. https://doi.org/10.1186/s12984-019-0500-5.

CHENG T., CHIANG C., WU P., & CHU I. Effects of Exergames on Physical Fitness in Middle-Aged and Older Adults in Taiwan. International Journal of Environmental Research and Public Health, 2020, 17(7): 2565. https://doi.org10.3390/ijerph17072565.

MARQUÉS E., ARNAL A., BUITRAGO G., SUSO L., CUENCA F., & ESPÍ G. Effectiveness of Nintendo Wii and Physical Therapy in Functionality, Balance, and Daily Activities in Chronic Stroke Patients. Journal of the American Medical Directors Association, 2021, 22(5): 1073–1080. https://doi.org/10.1016/j.jamda.2021.01.076.

CHACHA F., BERMEO J., HUERTA M., & SAGBAY G. Videogame Implementation for Rehabilitation in Patients with Parkinson Disease. In: LHOTSKA L., SUKUPOVA L., LACKOVIĆ I., & IBBOTT G. (Eds) World Congress on Medical Physics and Biomedical Engineering 2018. IFMBE Proceedings, 68(3): 201-295. Springer, Singapore. https://doi.org/10.1007/978-981-10-9023-3_36.

JINHUI L., LARGA L., HUO P., MA C., WANG L., & THENG Y. Wii or Kinect? A pilot study of the exergame effects on older adults’ physical fitness and psychological perception. International Journal of Environmental Research and Public Health, 2021, 18(24): 12939. https://doi.org/10.3390/ijerph182412939.

ARIAS, L., ÁLVAREZ, S., PEZO, C., JERE, D., ORELLANA, M., FERRER, P., & FARIAS, C. Uso de la Wii Balance Board como mecanismo de reconocimiento y clasificación del riesgo de caídas en el adulto mayor. SPORT TK-Revista EuroAmericana de Ciencias del Deporte, 2023, 12: 3. https://doi.org/10.6018/sportk.571561.

FUERTES G., MOLLINEDA R., GALLARDO J., & PLA F. A RGBD-Based interactive system for Gaming-Driven rehabilitation of upper limbs. Sensors, 2019, 19(16): 3478. https://doi.org/10.3390/s19163478.

SÁPI M., DOMJÁN A., FEHÉRNÉ K., & PINTÉR S. Is Kinect Training Superior to Conventional Balance Training for Healthy Older Adults to Improve Postural Control? Games for Health Journal, 2019, 8(1): 41–48. https://doi.org/10.1089/g4h.2018.0027.

HERNÁNDEZ J., RAUCH M., RIVAS D., ASENIO P., ASENIO C., & SOLIS M. Efectos del entrenamiento con Xbox Kinect sobre la movilidad funcional en adultos mayores. Una revisión breve. Revista Ciencias De La Actividad Física UCM, 2018, 19(2): 1-10. https://doi.org/10.29035/rcaf.19.2.2.

BURKE J., MCNEILL M., CHARLES D., MORROW P., CROSBIE J., & MCDONOUGH S. Optimising engagement for stroke rehabilitation using serious games, The Visual Computer, 2009, 25(12): 1085-1099. https://doi.org/10.1007/s00371-009-0387-4.

GALNA B., BARRY G., JACKSON D., MHIRIPIRI D., OLIVIER P., & ROCHESTER L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture, 2014, 39(4): 1062-8.

VERNON S., PATERSON K., BOWER K., MCGINLEY J., MILLER K., & PUA Y. Quantifying individual components of the timed up and go using the kinect in people living with stroke. Neurorehab Neural Repair, 2015, 29: 48-53. https://doi.org/10.1177/1545968314529475.

CALLEJAS-CUERVO M, RUIZ-OLAYA A. F. and GUTIERREZ SALAMANCA R. M. Biomechanical motion capture methods focused on tele-physiotherapy. 2013 Pan American Health Care Exchanges, Medellin, Colombia, 2013: 1-6, https://doi.org/10.1109/PAHCE.2013.6568264.

ALARCÓN-ALDANA A.C., CALLEJAS-CUERVO M., & BO A.P.L. Upper limb Physical Rehabilitation Using serious videogames and motion capture systems: A Systematic review. Sensors, 2020, 20(21): 5989. https://doi.org/10.3390/s20215989.

AGYEMAN M., AL-MAHMOOD A., & HOXHA I. A Home Rehabilitation System Motivating Stroke Patients with Upper and/or Lower Limb Disability. Proceedings of the International Symposium on Computer Science and Intelligent Control - Amsterdam, Netherlands, 2019. https://doi.org/10.1145/3386164.3386168.

WITTMANN F., LAMBERCY O., & GASSERT R. Magnetometer-Based drift correction during rest in IMU arm motion tracking. Sensors, 2019, 19(6): 1312. https://doi.org/10.3390/s19061312.

DUQUE L., CORNEJO R., ORNELAS M., BENAVIDES E., & ORDOÑES O. Actividad física con video juegos serios para adultos mayores. Revista Caribeña de Investigación Educativa, 2022, 6(1): 104-119. https://doi.org/10.32541/recie.2022.v6i1.pp104-119


Refbacks

  • There are currently no refbacks.