Electromagnetic Wave Absorption Capability and Magnetic Properties of Magnetic Jabon Wood

Istie Rahayu, Rohmat Ismail, Mamay Maslahat, Wayan Darmawan, Irma Wahyuningtyas, Esti Prihatini, Gilang Dwi Laksono

Abstract

Magnetic wood was prepared from jabon wood (Anthocephalus cadamba Miq.) impregnated with magnetite (Fe3O4) nanoparticles produced by the co-precipitation method using NaOH (MG-SB) and NH4OH (MG-WB) as base precursors. This study aims to characterize the magnetic and physical properties of magnetic jabon wood and its electromagnetic wave absorption behavior. Three levels of magnetite concentration, specifically 1%, 2.5%, and 5%, were submerged in wood for thirty minutes under a vacuum pressure of -0.5 bar, followed by a pressure of 2 bar for two hours. The enhancement of jabon wood’s physical properties, including its weight percent gain, bulking effect, anti-swelling efficiency, water uptake, and wood density, was confirmed to have a positive impact. The success of magnetite impregnation into wood was also demonstrated by the presence of magnetite inside the wood cavities by the SEM-EDX analysis and a new peak in FTIR spectra, which indicated the Fe-O functional group. The measurement of XRD spectra indicated an increase in the crystalline area of cellulose. The most important point is that this treatment can also improve the magnetic properties of wood, as seen from the analysis results obtained using Tesla meter, VSM, and VNA instruments. The MG-SB 5% magnetic jabon wood is capable of absorbing 94.71% of electromagnetic waves, while the MG-WB 5% is capable of absorbing 95.55% of electromagnetic waves. Fe3O4 nanoparticles not only improve the physical properties of jabon wood, but also expand its intended use, enabling it to become a wood-based advanced material that can absorb electromagnetic waves effectively.

 

Keywords: Anthocephalus cadamba, coprecipitation, magnetite, impregnation, physical properties.

 

https://doi.org/10.55463/issn.1674-2974.51.6.35


Full Text:

PDF


References


BI W., LI H., HUI D., GAFF M., LORENZO R., CORBI I., CORBI O., and ASHRAF M. Effects of chemical modification and nanotechnology on wood properties. Nanotechnology Reviews, 2021, 10(1): 978-1008. https://doi.org/10.1515/ntrev-2021-0065

GARSKAITE E., STOLL S. L., FORSBERG F., LYCKSAM H., STANKEVICIUTE Z., KAREIVA A., QUINTANA A., JENSEN C. J., LIU K., and SANDBERG D. The Accessibility of the Cell Wall in Scots Pine (Pinus Sylvestris L.) Sapwood to Colloidal Fe3O4 Nanoparticles. ACS Omega, 2021, 6(33): 21719–21729. https://doi.org/10.1021/acsomega.1c03204

DONG Y., YAN Y., ZHANG Y., ZHANG S., and LI J. Combined treatment for conversion of fast-growing poplar wood to magnetic wood with high dimensional stability. Wood Science and Technology, 2016, 50(3): 503–517. https://doi.org/10.1007/s00226-015-0789-6

WAHYUNINGTYAS I., RAHAYU I. S., MADDU A., and PRIHATINI E. Magnetic properties of wood treated with nano-magnetite and furfuryl alcohol impregnation. BioResources, 2022, 17(4): 6496–6510. https://doi.org/10.15376/biores.17.4.6496-6510

LAKSONO G. D., RAHAYU I. S., KARLINASARI L., DARMAWAN W., and PRIHATINI E. Characteristics of magnetic sengon wood impregnated with nano Fe3O4 and furfuryl alcohol. Journal of the Korean Wood Science and Technology, 2023, 51(1): 1–13. https://doi.org/10.5658/WOOD.2023.51.1.1

FADIA S. L., RAHAYU I., NAWAWI D. S., ISMAIL R., and PRIHATINI E. The Physical and Magnetic Properties of Sengon (Falcataria moluccana Miq.) Impregnated with Synthesized Magnetite Nanoparticles. Jurnal Sylva Lestari, 2023, 11(3): 408–426. https://doi.org/10.23960/jsl.v11i3.761

KONG I., AHMAD S. H., ABDULLAH M. H., HUI D., YUSOFF A. N., and PURYANTI D. Magnetic and Microwave Absorbing Properties of Magnetite–Thermoplastic Natural Rubber Nanocomposites. Journal of Magnetism and Magnetic Materials, 2010, 322: 3401–3409. https://doi.org/10.1016/j.jmmm.2010.06.036

JAYAPRAKASH J., SRINIVASAN N., and CHANDRASEKARAN P. Surface modifications of CuO nanoparticles using ethylene diamine tetra acetic acid as a capping agent by sol–gel routine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 123: 363–368. https://doi.org/10.1016/J.SAA.2013.12.080

WANG J., LIU J., LI J., and ZHU J. Y. Characterization of Microstructure, Chemical, and Physical Properties of Delignified and Densified Poplar Wood. Materials, 2021, 14(19): 5709. https://doi.org/10.3390/ma14195709

PETERNELE W. S., MONGE FUENTES V., FASCINELI M. L., RODRIGUES DA SILVA J., SILVA R. C., LUCCI C. M., and DE AZEVEDO R. B. Experimental Investigation of the Coprecipitation Method: An Approach to Obtain Magnetite and Maghemite Nanoparticles with Improved Properties. Journal of Nanomaterials, 2014, 2014(1): 682985. https://doi.org/10.1155/2014/682985

DAOUSH W. M. Co-Precipitation and Magnetic Properties of Magnetite Nanoparticles for Potential Biomedical Applications. Journal of Nanomedicine Research, 2017, 5(3): 12–16. https://doi.org/10.15406/jnmr.2017.05.00118

FUMIS D. B., SILVEIRA M. L. D. C., GAGLIERI C., FERREIRA L. T., MARQUES R. F. C., and MAGDALENA A. G. The Effect of EDTA Functionalization on Fe3O4 Thermal Behavior. Materials Research, 2022, 25: e20220312. https://doi.org/10.1590/1980-5373-MR-2022-0312

KHAN I., SAEED K., and KHAN I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2019, 12(7): 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011

MARTAWIJAYA A., HADJODARSONO S., and HAJI M. Atlas Kayu Indonesia Jilid II. Pusat Penelitian dan Pengembangan Hutan dan Konservasi Alam, Bogor, 2005.

ZHENG D., DONG R., LI Q., and QIU X. Investigation on the binding force between lignin and magnetic Fe3O4 nanoparticles with AFM. Applied Surface Science, 2021, 538: 148146. https://doi.org/10.1016/j.apsusc.2020.148146

SULISTIO Y., FEBRYANO I. G., YOO J., KIM S., LEE S., HASANUDIN U., and HIDAYAT W. Effects of Torefaction with Counter-Flow Multi Baffle (COMB) Reactor and Electric Furnace on the Properties of Jabon (Anthocephalus Cadamba) Pellets. Jurnal Sylva Lestari, 2020, 8(1): 65-76. https://doi.org/10.23960/jsl1865-76

XUE F., & ZHAO G. Optimum preparation technology for Chinese fir wood/Ca-montmorillonite (Ca-MMT) composite board. Forestry Studies in China, 2008, 10(3): 199-204. https://doi.org/10.1007/s11632-008-0039-1

RAHAYU I., PRIHATINI E., ISMAIL R., DARMAWAN W., KARLINASARI L., and LAKSONO G. D. Fast-Growing Magnetic Wood Synthesis by an In-Situ Method. Polymers, 2022, 14(11): 2137. https://doi.org/10.3390/polym14112137

COATES J. Interpretation of Infrared Spectra, A Practical Approach. In: MEYERS R. A., & MCKELVY M. L. (eds.) Encyclopedia of Analytical Chemistry. 1st ed. Wiley, 2000. https://doi.org/10.1002/9780470027318.a5606

HAZARIKA A., & MAJI T. K. Modification of softwood by monomers and nanofillers. Defence Science Journal, 2014, 64(3): 262-272. https://doi.org/10.14429/dsj.64.7325

MAYERHÖFER T., & POPP J. The Electric Field Standing Wave Effect in Infrared Transflection Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 191: 283-289. https://doi.org/10.1016/j.saa.2017.10.033

OSMAN A. I., BLEWITT J., ABU-DAHRIEH J. K., FARRELL C., AL-MUHTASEB A. H., HARRISON J., and ROONEY D. W. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environmental Science and Pollution Research, 2019, 26(2): 37228–37241. https://doi.org/10.1007/s11356-019-06594-w

DONG Y., YAN Y., ZHANG S., and LI J. Wood/Polymer Nanocomposites Prepared by Impregnation with Furfuryl Alcohol and Nano-SiO2. BioResources, 2014, 9(4): 6028–6040. https://doi.org/10.15376/biores.9.4.6028-6040

JAKOB M., MAHENDRAN A. R., GINDL-ALTMUTTER W., BLIEM P., KONNERTH J., MÜLLER U., and VEIGEL S. The strength and stiffness of oriented wood and cellulose-fibre materials: A review. Progress in Materials Science, 2022, 125: 100916. https://doi.org/10.1016/j.pmatsci.2021.100916

SOMPECH S., SRION A., and NUNTIYA A. The effect of ultrasonic treatment on the particle size and specific surface area of LaCoO3. Procedia Engineering, 2012, 32: 1012-1018. https://doi.org/10.1016/j.proeng.2012.02.047

GAO H. L., WU G. Y., GUAN H. T., and ZHANG G. L. In situ preparation and magnetic properties of Fe3O4/wood composite. Materials Technology, 2012, 27(1): 101–103. https://doi.org/10.1179/175355511X13240279339806

NYPELÖ T. Magnetic cellulose: Does extending cellulose versatility with magnetic functionality facilitate its use in devices? Journal of Materials Chemistry C, 2022, 10(3): 805–818. https://doi.org/10.1039/d1tc02105b

MOYA R., GAITÁN-ÁLVAREZ J., BERROCAL A., and MERAZZO K. J. In Situ Synthesis of Fe3O4 Nanoparticles and Wood Composite Properties of Three Tropical Species. Materials, 2022, 15(9): 3394. https://doi.org/10.3390/ma15093394

PRIHATINI E., WAHYUNINGTYAS I., RAHAYU I. S., and ISMAIL R. Pengaruh Larutan Furfuril Alkohol dan Nanopartikel SiO2 pada Beberapa Metode Impregnasi Kayu Jabon. Indonesian Journal of Laboratory, 2023, 6(3): 7–13. https://doi.org/10.22146/ijl.v0i3.84108

JOHN S. P., & MATHEW J. Superparamagnetism of Mg0.5Zn0.5Fe2O4 nanoparticles: Dependence of pH in the sol-gel auto-combustion method. AIP Conference Proceedings, 2019, 2162: 020066. https://doi.org/10.1063/1.5130276

PRIHATINI E., WAHYUNINGTYAS I., RAHAYU I., and ISMAIL R. Modification of Fast-Growing Wood into Magnetic Wood with Impregnation Method Using Fe3O4 Nanoparticles. Jurnal Sylva Lestari, 2022, 10(2): 211-222. https://doi.org/10.23960/jsl.v11i2.651

FADIA S. L., RAHAYU I., NAWAWI D. S., ISMAIL R., and PRIHATINI E. Magnetic characteristics of sengon wood-impregnated magnetite nanoparticles synthesized by the co-precipitation method. AIMS Materials Science, 2024, 11(1): 1-27. https://doi.org/10.3934/matersci.2024001

SITORUS Z., HAKIM L., SIHOMBING F. A., and SIHOMBING A. T. Influence of Micro Structure Based Magnetic Material BaNixAl6-xFe6O19 as Material Absorber Wave Magnetic Structure. Journal of Physics: Conference Series, 2018, 1116: 032036. https://doi.org/10.1088/1742-6596/1116/3/032036

JOHAN A., SETIABUDIDAYA D., ARSYAD F. S., MASHADI, SARWANTO Y., WINATAPURA D. S., TARYANA Y., YUNASFI, and ADI W. A. Magnetic and Microwave Absorbing Properties in Semi-Hard CoxFe(3-x)O4 Synthesized by Sol-Gel Method. Jurnal Teknologi, 2023, 85(4): 199–204. https://doi.org/10.11113/jurnalteknologi.v85.17741

SILVIA L., ASLAMA B., NOVIALENT E., and ZAINURI M. Synthesis of Magnetite Fe3O4 from Laterite Iron Rock as Microwave Absorber Material. Journal of Physics: Conference Series, 2021, 1951(1): 012024. https://doi.org/10.1088/1742-6596/1951/1/012024


Refbacks

  • There are currently no refbacks.