Hydrodynamic Trajectory Model of Macro- and Microplastic Surfaces in the Deep Sea of the Haruku Strait Indonesia

Muhammad Helmi, Agus Hartoko, Hendry Syahputra Ropinus Siagian, Eduard Meirenno Tielman, A.A. Md. Ananda Putra Suardana, Muh Aris Marfai, Bachtiar Wahyu Mutaqin, Muhammad Rizali, Nurhadi, Anindya Wirasatriya

Abstract

Marine plastic debris is a primary problem in most countries. The study aims to analyze the abundance and spatial trajectory of marine plastic debris using a new horizontal and vertical trajectory approach in the deep seawater column of the Haruku Strait, Central Moluccas, Indonesia. The methodology integrates macro- and microplastic field sample abundance, photomicroscope analysis, and 2D hydrodynamic trajectory modeling. The study revealed that the composition of macroplastics was 69% plastic bag or plastic item (17%), bottle and cup fragments, nylon fishing gear 8%, polystyrene blocs 3%, clothes and footwear 2%, and rubber 1%. The components of microplastics are plastic fragments (64%), fibers (33%), pallets (1%), and plastic films (2%). The essential finding is that the size range of microplastic is 100-500 µm out of the five size classes potentially swallowed by marine organisms. Macro and micro-plastics spread by a current speed of 0.1-1.3 m.s-1 with the north and southward trajectory pattern. Plastic debris mainly spreads in the shallow coastal high biodiversity area depth of 0-15m out of ten depth-class trajectories up to 204 m in the deep sea of 2,100 m at the Haruku Strait. The dominant microplastic color is bright blue (75%). This scientific problem-solving contribution can be used for public and government awareness regarding communal plastic waste disposal behavior and as a basis for planning, mitigation strategies, and policies.

 

Keywords: hydrodynamics, microplastics, trajectory, Haruku Strait.

 

https://doi.org/10.55463/issn.1674-2974.51.6.15


Full Text:

PDF


References


MARTINS J., and SOBRAL P. Plastic marine Debris on the Portuguese coastline: a matter of size? Marine Pollution Bulletin, 2011, 62(12): 2649-2653.

LEE R.F., and SANDERS D.P. The amount and accumulation rate of plastic debris on marshes and beaches on the Georgia coast. Marine Pollution Bulletin, 2015, 91(1): 113-119.

SUARIA G., MELINTE-DOBRINESCU M.C., ION G., and ALIABI S. First observations on the abundance and composition of floating debris in the North-western Black Sea. Marine Environment Research, 2015, (107): 45-49.

SYAKTI A.D., BOUHROUM R., HIDAYATI N.V., KOENAWAN C.J., BOULKAMH A., SULISTYA I., LEBARILLIER S., AKHLUS S., DOUMENQ P., and CHUNG P.W.W. Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia. Marine Pollution Bulletin, 2017, 122(1-2): 217-225. DOI: 10.1016/j.marpolbul.2017.06.046.

GESAMP. Sources, fate, and effects of microplastics in the marine environment: a global assessment. UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. International Maritime Organization, London, 2015.

WRIGHT S.L., THOMPSON R.C., and GALLOWAY T.S. The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 2013, (178): 483-492.

ANDRADY A.L. Microplastics in the marine environment. Marine Pollution Bulletin, 2011, 62: 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

VIMALA, P.P., and MATHEW L. Biodegradation of polyethylene using Bacillus subtilis. Procedia Technology, 2016, 24: 232-239. https://doi.org/10.1016/j.protcy.2016.05.031.

GOROKHOVA E. Screening for microplastic particles in plankton samples: how to integrate marine litter assessment into existing monitoring programs? Marine Pollution Bulletin, 2015, 99: 271-275. https://doi.org/10.1016/j.marpolbul.2015.07.056.

LUSHER A.L., WELDEN N.A., SOBRAL P., and COLE M. Sampling, isolating, and identifying microplastics ingested by fish and invertebrates. Analytical Methods, 2017, (9): 1346-1360. https://doi.org/10.1039/c6ay02415g

STOLTE A., FORSTER S., GERDTS G., and SCHUBERT H. Microplastic concentrations in beach sediments along the German Baltic coast. Marine Pollution Bulletin, 2015, 99: 216-229. https://doi.org/10.1016/j.marpolbul.2015.07.022.

IMHOF H.K., SIGL R., BRAUER E., FEYL S., GIESEMANN P., KLINK S., LEUPOLZ K., LODER M.G.J., LOSCHEL L.A., MISSUN J., MUSZYNSKI S., RAMSPERGER A.F.R.M., SCHRANK I., SPECK, S., STEIBL, S., TROTTER B., WINTER I., and LAFORSCH C. Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Marine Pollution Bulletin, 2017, 116: 340-347.

MANALU A.A., HARIYADI, S., and WARDIATNO Y. Microplastics abundance in coastal sediments of Jakarta Bay, Indonesia. AACL Bioflux, 2017, 10(5).

CORDOVA M.R., and PRAYUDA B. Occurrence and abundance of microplastics in coral reef sediment: a case study in Sekotong, Lombok-Indonesia Occurrence and abundance of microplastics in coral reef sediment: a case study in Sekotong, Lombok-Indonesia. AACL Bioflux, 2018, 10(1): 23-29. DOI: 10.5281/zenodo.1297719.

STATISTIC OFFICE OF MALUKU TENGAH REGENCY. Pulau Haruku Subdistrict in Figure 2019. Maluku Tengah Regency, Indonesia, 2019.

MARINE AND FISHERIES AGENCY OF MALUKU PROVINCE. Coastal and Small Islands Zoning Plan (Final Report). Maluku Province, Indonesia. 2019.

BARROWS A.P.W., NEUMANN C.A., BERGER M.L., and SHAW S.D. Grab: vs. Neuston tow net: a microplastic sampling performance comparison and possible advances in the field. Analytical Methods, 2017, 9: 1446-1453.

ALAM F.C., SEMBIRING E., MUNTALIF B.S., and SUENDO V. Microplastic Distribution in Surface Water and Sediment River around Slum and Industrial Area (case study: Ciwalengke River, Majalaya district, Indonesia). Chemosphere, 2019, (224): 637-645.

ISOBE A., BUENAVENTURA N.T., CHASTAIN S., CHAVANICH S., COZAR A., DELORENZO M., HAGMANN P., HINATA H., KOZLOVSKIL N., LUSHER A.L., MARTIE E., MICHIDA Y., MU J., OHNO M., POTTER G., ROSS P.S., SAGAWA N., SHIM W.J., SONG Y.K., TAKADA H., TOKAI T., TORII T., UCHIDA K., VASSILENKO K., VIYAKARN V., and ZHANG W. An Interlaboratory Comparison Exercise for the Determination of Microplastics in Standard Sample Bottles. Marine Pollution Bulletin, 2019, 146: 831-837.

BADAN IINFORMASI GEOSPASIAL. Batimetri Nasional (BATNAS). 2018. https://www.big.go.id

COPERNICUS. Ocean Climate. ECMWF, 2019. https://climate.copernicus

DHI. MIKE-21 and MIKE-3 Flow Model FM. Hydrodynamic Module. Step-by-Step Training Guide. DHI MIKE, Denmark, 2010. https://manuals.mikepoweredbydhi.help/2019/Coast_and_Sea/MIKE_FM_HD_Step_By_Step.pdf

HARTOKO A., HELMI M., SUKARNO M., and HARIYADI. Earth quake and spatial tsunami modelling for the south Java coastal area - Indonesia. International Journal of GEOMATE, 2016, 11(25): 2455-2460.

HARTOKO A., FEBRIANTO A., PAMUNGKAS A., FACHRUDDIN I., HELMI M., and HARIYADI. The Myth and Legend of Sadai and Gaspar Strait Bangka Belitung (Banca-Billiton) and Oceanographic Conditions. International Journal of GEOMATE, 2019, 17(62): 212-218. https://doi.org/10.21660/2019.62.93965

SPRINTALL J., ARNOLD L.G., ARIANE K.L., TONG L., JAMES T.P., KANDAGA P., and SUSAN. The Indonesian seas and their role in the coupled ocean-climate system. Nature Geoscience, 2014, 7: 487-492. DOI: 10.1038/ngeo2188.

TAY Y.C., TODD P.A., ROSSHAUG P.S., and CHOU L.M. Simulating the Transport of Broadcast Coral Larvae among the Southern Islands of Singapore. Aquatic Biology, 2012, 15(3): 283-297.

ATMADPOERA A.S., and ADHYATAMA D. 3D Numerical Simulation Model for Current at Jakarta Bay: before and after reclamation. IPB Scientific Repository. Bogor, 2015: 839.

JAMBECK J.R., GEYER R., WILCOX C., SIEGLER T.R., PERRYMAN M., ANDRADY A., NARAYAN R., and LAW K.L. Marine Pollution. Plastic Waste Inputs from Land into the Ocean. Ocean Science, 2015, 347: 768-771.

STELLING G.S., and VAN KESTER J.A.T.M. On the approximation of horizontal gradients in sigma co-ordinates for bathymetry with steep bottom slopes. International Journal for Numerical Methods in Fluids, 1994, 18(10): 915-935.

SEMBIRING E., FAREZA A.A., SUENDO V., and REZA M. The Presence of Microplastics in Water, Sediment, and Milkfish (Chanos chanos) at the Downstream Area of Citarum River, Indonesia. Water, Air, & Soil Pollution, 2020, 231. DOI: 10.1007/s11270-020-04710-y

PABORTSAYA K., and LAMPITT R.S. High Concentrations of Plastic Hidden beneath the Surface of the Atlantic Ocean. Nature Communications, 2020, 11(1): 1-11.

CZIZEWESKI A., PIMENTA F.M., and SAAVEDRA O.R. Numerical Modeling of Maranhão Gulf Tidal Circulation and Power Density Distribution. Ocean Dynamics, 2020, 70(5): 667-682.

CARLESS S.J., GREEN J.A.M., PELLING H.E., and WILMES S.B. Effects of Future Sea-Level Rise on Tidal Processes on the Patagonian Shelf. Journal of Marine Systems, 2016, 163: 113-124. http://dx.doi.org/10.1016/j.jmarsys.2016.07.007

TUBAGUS W., SUNARTO, ISMAIL M.R., and YULIADI L.P.S. Identification of Microplastic Composition on Clams (Gafrarium tumidum) and Sediments in Pari Island, Kepulauan Seribu, Jakarta. Indonesian Journal of Marine Sciences, 2020, 25(3): 115-120.


Refbacks

  • There are currently no refbacks.