Sodium Bicarbonate: Potential Cancer Therapy

Tayeb Basta

Abstract

This article aims to describe the application of sodium bicarbonate for cancer therapy. Cancer is a leading cause of death worldwide. The extracellular tumor microenvironment (TME) acidity of cancer cells is a defining characteristic. It affects the behavior of cancer cells in several ways, including tumor growth, invasion, metastasis, and resistance to treatment. These changes trigger metabolic changes in cancer cells, enhancing their ability to proliferate and survive. In addition, scientists have stated that the TME generates acidity. Researchers even went so far as to claim that tumor invasion did not occur in less acidic zones. Experts propose to focus on this acidity as a potential therapeutic target. A few scientists proposed sodium bicarbonate to eliminate TME acidity. Few studies have conducted several in vivo tests to investigate sodium bicarbonate's potential as an anticancer agent. The effects of adding sodium bicarbonate to various treatments for different types of tumors were expressed without going into additional detail about the stages of occurrence. In this study, we focused on employing sodium bicarbonate to remove acid from the TME, thereby inhibiting tumor growth, blocking local invasion, and inhibiting tumor metastasis. A high hydrogen ion concentration (H+) characterizes acidic solutions. When added to an aqueous solution, sodium bicarbonate breaks down into bicarbonate anions (HCO3) and sodium ions (Na+). The bicarbonate anions consume hydrogen ions (H+) to produce carbonic acid (H2CO3). The carbonic acid then converts to carbon dioxide (CO2) and water (H2O). We propose conducting a clinical trial that focuses on pH as a measure of decreasing TME acidity and, as a result, inhibiting the development and proliferation of tumor cells.

 

Keywords: cancer, acidosis, tumor microenvironment, sodium bicarbonate, tumor growth.

 

https://doi.org/10.55463/issn.1674-2974.51.6.9


Full Text:

PDF


References


FRICK C., RUMGAY H., VIGNAT J., GINSBURG O., NOLTE E., BRAY F., and SOERJOMATARAM I. Quantitative estimates of preventable and treatable deaths from 36 cancers worldwide: a population-based study. The Lancet. Global Health, 2023, 11(11): 1700-1712.

SUNG H., FERLAY J., SIEGEL R., LAVERSANNE M., SOERJOMATARAM I., JEMAL A., and BRAY F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021, 71: 209-249. https://doi.org/10.3322/caac.21660

FERLAY J., COLOMBET M., SOERJOMATARAM I., PARKIN D., PIÑEROS M., ZNAOR A., and BRAY F. Cancer statistics for the year 2020: An overview. International Journal of Cancer, 2021, 149: 778-789. https://doi.org/10.1002/ijc.33588

WHO. Global cancer burden growing, amidst mounting need for services, 2024. https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services#

POLICASTRO, L.L., IBAÑEZ, I.L., NOTCOVICH, C., DURÁN, H. A., and PODHAJCER O.L. The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species-targeted gene therapy. Antioxidants & Redox Signaling, 2013, 19(8): 854-895.

RIBEIRO FRANCO P.I., RODRIGUES A.P., DE MENEZES L.B., and PACHECO MIGUEL M. Tumor microenvironment components: Allies of cancer progression. Pathology, Research and Practice, 2020, 216(1): 152729. https://doi.org/10.1016/j.prp.2019.152729

DING Z., ZOU X., and WEI Y. Cancer Microenvironment and Cancer Vaccine. Cancer Microenvironment, 2012, 5: 333-344.

WITZ I.P., and LEVY-NISSENBAUM O. The tumor microenvironment in the post-PAGET era. Cancer Letters, 2006, 242(1): 1-10.

DE VISSER K.E., and JOYCE J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 2023, 41(3): 374-403. DOI: 10.1016/j.ccell.2023.02.016.

LI X., and YANG W. Tumor acidic microenvironment and targeted pH molecular imaging. Chinese Journal of Nuclear Medicine and Molecular Imaging, 2019, 39: 300-303.

LEE S.H., and GRIFFITHS J.R. How and Why Are Cancers Acidic? Carbonic Anhydrase IX and the Homeostatic Control of Tumour Extracellular pH. Cancers (Basel), 2020, 12(6): 1616.

BOEDTKJER E., and PEDERSEN S.F. The Acidic Tumor Microenvironment as a Driver of Cancer. Annual Review of Physiology, 2020, 10(82): 103-126.

FENG L., DONG Z., TAO D., ZHANG Y., and LIU Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. National Science Review, 2018, 5: 269-286.

KRAUS M., and WOLF B. Implications of acidic tumor microenvironment for neoplastic growth and cancer treatment: a computer analysis. Tumour biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine, 1996, 17(3): 133-154.

KONDO A., YAMAMOTO S., NAKAKI R., SHIMAMURA T., HAMAKUBO T., SAKAI J., KODAMA T., YOSHIDA T., ABURATANI H., and OSAWA T. Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression. Cell Reports, 2017, 18(9): 2228-2242. https://doi.org/10.1016/j.celrep.2017.02.006

KATO Y., OZAWA S., MIYAMOTO C., MAEHATA Y., SUZUKI A., MAEDA T., and BABA Y. Acidic extracellular microenvironment and cancer. Cancer Cell International, 2013, 13: 89. DOI: 10.1186/1475-2867-13-89.

GATENBY R., GAWLINSKI E., GMITRO A., KAYLOR B., and GILLIES R. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Research, 2006, 66(10): 5216-5223. https://doi.org/10.1158/0008-5472.CAN-05-4193

PEPPICELLI S., BIANCHINI F., and CALORINI L. Extracellular acidity, a “reappreciated” trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer and Metastasis Reviews, 2014, 33: 823-832.

CALORINI L., PEPPICELLI S., and BIANCHINI F. Extracellular acidity as favouring factor of tumor progression and metastatic dissemination. Experimental Oncology, 2012, 34(2): 79-84.

LOGOZZI M., SPUGNINI E.P., MIZZONI D., RAIMO R.D., and FAIS S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer and Metastasis Reviews, 2019, 38: 93-101.

BÖHME I., and BOSSERHOFF A.K. Acidic tumor microenvironment in human melanoma. Pigment Cell & Melanoma Research, 2015, 29: 508-23.

QUAIL D.F., and JOYCE J.A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 2013, 19(11): 1423–1437. https://doi.org/10.1038/nm.3394

JAYAPPA K.D., KOVI R.C., and CHATTERJEE S. Interplay between Tumor Microenvironment and Cancer Cells. BioMed Research International, 2016: 4650498.

BOUSSADIA Z., LAMBERTI J., MATTEI F., PIZZI E., PUGLISI R., ZANETTI C., PASQUINI L., FRATINI F., FANTOZZI L., FELICETTI F., FECCHI K., RAGGI C., SANCHEZ M., D’ATRI S., CARÈ A., SARGIACOMO M., and PAROLINI I. Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules. Journal of Experimental & Clinical Cancer Research: CR, 2018, 37(1): 245.

LIAO Z., LIM J.J.H., LEE J.X.T., CHUA D., VOS M.I.G., YIP Y.S., TOO C.B., CAO H., WANG J.K., SHOU Y., TAY A., LEHTI K., CHENG H.S., TAY C.Y., and TAN N.S. Attenuating Epithelial-to-Mesenchymal Transition in Cancer through Angiopoietin-Like 4 Inhibition in a 3D Tumor Microenvironment Model. Advanced Healthcare Materials, 2024, 13(10): e2303481. https://doi.org/10.1002/adhm.202303481

DU J.Z., MAO C.Q., YUAN Y.Y., YANG X.Z., and WANG J. Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Biotechnology Advances, 2014, 32(4): 789-803. https://doi.org/10.1016/j.biotechadv.2013.08.002

ESTRELLA V., CHEN T., LLOYD M., WOJTKOWIAK J., CORNNELL H.H., IBRAHIM-HASHIM A., BAILEY K., BALAGURUNATHAN Y., ROTHBERG J.M., SLOANE B.F., JOHNSON J., GATENBY R.A., and GILLIES R.J. Acidity generated by the tumor microenvironment drives local invasion. Cancer Research, 2013, 73(5): 1524-1535.

NERI D., and SUPURAN C.T. Interfering with pH regulation in tumours as a therapeutic strategy. Nature Reviews Drug Discovery, 2011, 10: 767-777.

MONTCOURRIER P., SILVER I., FARNOUD R., BIRD I., and ROCHEFORT H. Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism. Clinical & Experimental Metastasis, 1997, 15: 382-392. https://doi.org/10.1023/A:1018446104071

WORSLEY C.M., VEALE R.B., and MAYNE E.S. The acidic tumour microenvironment: Manipulating the immune response to elicit escape. Human Immunology, 2022, 83(5): 399-408.

RUSOKE-DIERICH O. Acid-Base Balance. In: Diving Medicine. Springer, Cham, 2018: 9-22. https://doi.org/10.1007/978-3-319-73836-9_22

YUCHA C.B. Renal regulation of acid-base balance. Nephrology Nursing Journal: Journal of the American Nephrology Nurses' Association, 2004, 31(2): 201-207. https://digitalscholarship.unlv.edu/nursing_fac_articles/17

CLANCY J., and MCVICAR A. Intermediate and long-term regulation of acid-base homeostasis. British Journal of Nursing, 2007, 16(17): 1076-1079. DOI: 10.12968/BJON.2007.16.17.27253

HONDA Y. Acid-base regulation: a general introduction. Nihon Rinsho: Japanese Journal of Clinical Medicine, 1992, 50(9): 2011-2015.

LIM S. Metabolic acidosis. Acta Medica Indonesiana, 2007, 39(3): 145-150.

LASKI M.E. Metabolic Acidosis: Physiology, Presentation, and Diagnosis. In: WESSON, E.D. (ed.) Metabolic Acidosis. Springer, New York, NY., 2016: 7-16. https://doi.org/10.1007/978-1-4939-3463-8_2

HOLT C.M., and HITCHINGS A.W. Drug-induced metabolic acidosis. Adverse Drug Reaction Bulletin, 2017, 304: 1176-1178.

PIAGNERELLI M., LEJEUNE P., and VANHAEVERBEEK M. Diagnosis and treatment of an unusual cause of metabolic acidosis: ethylene glycol poisoning. Acta Clinica Belgica, 1999, 54(6): 351-356.

KATHERINE A.J. Chapter 27 - Acidosis. In: ZAOUTIS L.B., and CHIANG V.W. (eds.). Comprehensive Pediatric Hospital Medicine, Mosby, 2007: 125-132. https://doi.org/10.1016/B978-032303004-5.50031-4

BARKER A., and KNAPP K. Acids, Bases and Salts. In: Work Out Chemistry GCSE. Macmillan Work Out Series. Palgrave, London, 1990: 83-88. https://doi.org/10.1007/978-1-349-11950-9_11

FIORICA V. A Table for Converting pH to Hydrogen Ion Concentration [H+] Over the Range 5-9. 1968. https://books.google.ae/books?id=4WzIWmxkgFQC, U.S. Department of Transportation, Federal Aviation Administration, Office of Aviation Medicine.

KAPPY M.S., and MORROW G. A diagnostic approach to metabolic acidosis in children. Pediatrics, 1980, 65(2): 351-356.

YANG S.S., LIN S., TSAI W., JUANG J., and LIN Y. Evaluation of Metabolic Acidosis in Chronic Hemodialysis Patients. Journal of Medical Sciences, 2002, 22: 165-9.

FUNES S., and DE MORAIS H.A. A Quick Reference on High Anion Gap Metabolic Acidosis. The Veterinary Clinics of North America. Small Animal Practice, 2017, 47(2): 205-207.

KRAUT J., and MADIAS N. Treatment of acute metabolic acidosis: a pathophysiologic approach. Nature Reviews Nephrology, 2012, 8: 589-601. https://doi.org/10.1038/nrneph.2012.186

OBUNAI K., JANI S., and DANGAS G. Cardiovascular morbidity and mortality of the metabolic syndrome. The Medical Clinics of North America, 2007, 91(6): 1169-84. https://doi.org/10.1016/J.MCNA.2007.06.003

ZHANG H. Will cancer cells be defeated by sodium bicarbonate? Science China Life Sciences, 2017, 60: 326-328.

YANG M., ZHONG X., and YUAN Y. Does Baking Soda Function as a Magic Bullet for Patients with Cancer? A Mini Review. Integrative Cancer Therapies, 2020, 19: 1534735420922579. DOI: 10.1177/1534735420922579.

ENGELKING L.R. Textbook of Veterinary Physiological Chemistry. Chapter 93 - Alkalinizing and Acidifying Solutions. Teton NewMedia, Jackson, Wyoming, 2015: 606-611.

PENTEL P., and BENOWITZ N. Efficacy and mechanism of action of sodium bicarbonate in the treatment of desipramine toxicity in rats. Journal of Pharmacology and Experimental Therapeutics, 1984, 230(1): 12-19.

MIRRAKHIMOV A.E., AYACH T., BARBARYAN A., TALARI G., CHADHA R., and GRAY A. The Role of Sodium Bicarbonate in the Management of Some Toxic Ingestions. International Journal of Nephrology , 2017: 7831358. DOI: 10.1155/2017/7831358

EVANS D., PYE G., BRAMLEY R., CLARK A., DYSON T., and HARDCASTLE J. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut, 1988, 29: 1035-1041.

BEASLEY D.E., KOLTZ A.M., LAMBERT J.E., FIERER N., and DUNN R.R. The Evolution of Stomach Acidity and Its Relevance to the Human Microbiome. PLOS ONE, 10(7): e0134116. https://doi.org/10.1371/journal.pone.0134116

PINHEIRO V.B., BAXMANN A.C., TISELIUS H.-G., and HEILBERG I.P. Sodium bicarbonate increases urinary citrate and pH. Nature Reviews Urology, 2013, 10(6): 308. https://doi.org/10.1038/nrurol.2013.103

SAKHAEE K., NICAR M., HILL K., and PAK C.Y.C. Contrasting effects of potassium citrate and sodium citrate therapies on urinary chemistries and crystallization of stone-forming salts. Kidney International, 1983, 24(3): 348-352, https://doi.org/10.1038/ki.1983.165

MARK N., LEUNG J., ARIEFF A., and MANGANO D. Safety of low-dose intraoperative bicarbonate therapy: a prospective, double-blind, randomized study. The Study of Perioperative Ischemia (SPI) Research Group. Critical Care Medicine, 1993, 21(5): 659-65. https://doi.org/10.1097/00003246-199305000-00007

WADDINGTON C., DARTON T., JONES C., HAWORTH K., PETERS A., JOHN T., THOMPSON B., KERRIDGE S., KINGSLEY R., ZHOU L., HOLT K., YU L., LOCKHART S., FARRAR J., SZTEIN M., DOUGAN G., ANGUS B., LEVINE M., and POLLARD A. An Outpatient, Ambulant-Design, Controlled Human Infection Model Using Escalating Doses of Salmonella Typhi Challenge Delivered in Sodium Bicarbonate Solution. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 2014, 58: 1230-1240. https://doi.org/10.1093/cid/ciu078

HOSTE E., WAELE J., GEVAERT S., UCHINO S., and KELLUM J. Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association, 2010, 25(3): 747-758. https://doi.org/10.1093/ndt/gfp389

VUKMIR R., BIRCHER N., and SAFAR P. Sodium bicarbonate in cardiac arrest: a reappraisal. American Journal of Emergency Medicine, 1996, 14(2): 192-206. https://doi.org/10.1016/S0735-6757(96)90133-3

FROM A.M., BARTHOLMAI B., WILLIAMS A., CHA S., PFLUEGER A., and MCDONALD F. Sodium bicarbonate is associated with an increased incidence of contrast nephropathy: a retrospective cohort study of 7977 patients at mayo clinic. Clinical Journal of the American Society of Nephrology, 2008, 3(1): 10-18. https://doi.org/10.2215/CJN.03100707

SCHNEIDER A., BELLOMO R., READE M., PECK L., YOUNG H., EASTWOOD G., GARCIA M., MOORE E., and HARLEY N. Safety evaluation of a trial of lipocalin-directed sodium bicarbonate infusion for renal protection in at-risk critically ill patients. Critical Care and Resuscitation: Journal of the Australasian Academy of Critical Care Medicine, 2013, 15(2), 126-133. https://doi.org/10.1016/s1441-2772(23)01779-9

LINFORD S., and JAMES H. Sodium Bicarbonate Abuse: A Case Report. British Journal of Psychiatry, 1986, 149: 502-503. https://doi.org/10.1192/bjp.149.4.502


Refbacks

  • There are currently no refbacks.