Enhancing Tomato Productivity by Determining the Planting Time and Intercropping System
Abstract
Tomatoes are plants that are highly susceptible to cultivation. Intercropping systems can enhance tomato and land productivity. However, selection of unsuitable intercrop types for tomatoes can cause competition among plants. Therefore, this study determined planting times and suitable intercrop types to increase tomato and land productivity in intercropping systems. The experiment was conducted using a split-plot design from December 2022 to April 2023 in Poncokusumo, Malang Regency. The main plots (planting times) consisted of four levels: 0 week after planting tomato (simultaneously with tomato), 1 week after planting (WAP), 2 WAP, and 3 WAP. The sub-plots (intercrop types) consisted of three levels: pakcoy, cabbage, and cauliflower. The results show that planting time and intercrop type significantly influence yield and components of tomato intercropping systems. Tomatoes planted simultaneously with pakcoy or 1 WAP demonstrated improved yield when intercropped. Tomato intercropped with cabbage and cauliflower showed superior growth and harvests at 2 or 3 WAP. Furthermore, treatment with pakcoy produced a higher land equivalent ratio (LER) of 2.09 than other treatments.
Keywords: cabbage, cauliflower, intercropping, planting time, tomato.
Full Text:
PDFReferences
ZHANG L., & HAN J. Improving water retention capacity of an aeolian sandy soil with feldspathic sandstone. Scientific Reports, 2019, 9(1): 14719. https://doi.org/10.1038/s41598-019-51257-y
SKENDŽIĆ S., ZOVKO M., ŽIVKOVIĆ I. P., LEŠIĆ V., and LEMIĆ D. The Impact of Climate Change on Agricultural Insect Pests. Insects, 2021, 12(5): 440. https://doi.org/10.3390/insects12050440
MAITRA S., HOSSAIN A., BRESTIC M., SKALICKY M., ONDRISIK P., GITARI H., BRAHMACHARI K., SHANKAR T., BHADRA P., PALAI J. B., JENA J., BHATTACHARYA U., DUVVADA S. K., LALICHETTI S., and SAIRAM M. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy, 2021, 11(2): 343. https://doi.org/10.3390/agronomy11020343
PIERIK R., MOMMER L., and VOESENEK L. A. Molecular mechanisms of plant competition: neighbour detection and response strategies. Functional Ecology, 2013, 27(4): 841–853. https://doi.org/10.1111/1365-2435.12010
ZHU S., & MOREL J. B. Molecular Mechanisms Underlying Microbial Disease Control in Intercropping. Molecular Plant-Microbe Interactions, 2019, 32(1): 20–24. https://doi.org/10.1094/MPMI-03-18-0058-CR
HORTAL S., LOZANO Y. M., BASTIDA F., ARMAS C., MORENO J. L., GARCIA C., and PUGNAIRE F. I. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community. Scientific Reports, 2017, 7(1): 17756. https://doi.org/10.1038/s41598-017-18103-5
ELLAWALA KANKANAMGE C., & KODITHUWAKKU H. Effect of interspecific competition on the growth and nutrient uptake of three macrophytes in nutrient-rich water. Aquatic Ecology, 2017, 51(4): 625–634. https://doi.org/10.1007/s10452-017-9640-5
FOXX A. J., & FORT F. Root and shoot competition lead to contrasting competitive outcomes under water stress: A systematic review and meta-analysis. PLoS ONE, 2019, 14(12): e0220674. https://doi.org/10.1371/journal.pone.0220674
UKALSKA J., & JASTRZĘBOWSKI S. Sigmoid growth curves, a new approach to study the dynamics of the epicotyl emergence of oak. Folia Forestalia Polonica, 2019, 61(1): 30–41. https://doi.org/10.2478/ffp-2019-0003
SUÁREZ J. C., ANZOLA J. A., CONTRERAS A. T., SALAS D. L., VANEGAS J. I., URBAN M. O., BEEBE S. E., and RAO I. M. Agronomic Performance Evaluation of Intercropping Two Common Bean Breeding Lines with a Maize Variety under Two Types of Fertilizer Applications in the Colombian Amazon Region. Agronomy, 2022, 12(2): 307. https://doi.org/10.3390/agronomy12020307
TRINGOVSKA I., YANKOVA V., MARKOVA D., and MIHOV M. Effect of companion plants on tomato greenhouse production. Scientia Horticulturae, 2015, 186: 31–37. https://doi.org/10.1016/j.scienta.2015.02.016
LI X.-F., WANG C.-B., ZHANG W.-P., WANG L.-H., TIAN X.-L., YANG S.-C., JIANG W.-L., VAN RUIJVEN J., and LI L. The role of complementarity and selection effects in P acquisition of intercropping systems. Plant and Soil, 2018, 422(1–2): 479–493. https://doi.org/10.1007/s11104-017-3487-3
BEETS W. C. Multiple cropping and tropical farming systems. CRC Press, Boca Raton, Florida, 1982. https://doi.org/10.1201/9780429036491
LOEIRO DA CUNHA-CHIAMOLERA T. P., URRESTARAZU M., FILHO A. B. C., and MORALES I. Agronomic and Economic Feasibility of Tomato and Lettuce Intercropping in a Soilless System as a Function of the Electrical Conductivity of the Nutrient Solution. HortScience, 2017, 52(9): 1195–1200. https://doi.org/10.21273/HORTSCI12170-17
DOLIJANOVIC Z., KOVACEVIC D., OLJACA S., and SIMIC M. Types of interactions in intercropping of maize and soya bean. Journal of Agricultural Sciences, Belgrade, 2009, 54(3): 179–187. https://doi.org/10.2298/JAS0903179D
KORAV S., DHAKA A., SINGH R., PREMARADHYA N., and REDDY G. C. A study on crop weed competition in field crops. Journal of Pharmacognosy and Phytochemistry, 2018, 7(4): 3235–3240. https://www.phytojournal.com/archives/2018.v7.i4.5453/a-study-on-crop-weed-competition-in-field-crops
CHARLES G. W., SINDEL B. M., COWIE A. L., and KNOX O. G. G. Determining the critical period for weed control in high-yielding cotton using common sunflower as a mimic weed. Weed Technology, 2019, 33(6): 800–807. https://doi.org/10.1017/wet.2019.68
PURQUERIO L. F. V., DOS SANTOS F. F. B., and FACTOR T. L. Nutrient uptake by tomatoes ‘Dominador’ and ‘Serato’ grown in São Paulo State, Brazil. Acta Horticulturae, 2016, 1123: 35–40. https://doi.org/10.17660/ActaHortic.2016.1123.5
SMITH M. R., REIS HODECKER B. E., FUENTES D., and MERCHANT A. Investigating Nutrient Supply Effects on Plant Growth and Seed Nutrient Content in Common Bean. Plants, 2022, 11(6): 737. https://doi.org/10.3390/plants11060737
REID J. B., & MORTON J. D. Nutrient management for vegetable crops in New Zealand. Horticulture NZ, Wellington, 2019. https://doi.org/10.5281/ZENODO.2401910
TARIQ A., SARDANS J., PEÑUELAS J., ZHANG Z., GRACIANO C., ZENG F., OLATUNJI O. A., ULLAH A., and PAN K. Intercropping of Leguminous and Non-Leguminous Desert Plant Species Does Not Facilitate Phosphorus Mineralization and Plant Nutrition. Cells, 2022, 11(6): 998. https://doi.org/10.3390/cells11060998
ZHANG F., & LI L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 2003, 248(1/2): 305–312. https://doi.org/10.1023/A:1022352229863
CECÍLIO FILHO A. B., REZENDE B. L. A., BARBOSA J. C., and GRANGEIRO L. C. Agronomic efficiency of intercropping tomato and lettuce. Anais da Academia Brasileira de Ciências, 2011, 83(3): 1109–1119. https://doi.org/10.1590/S0001-37652011000300029
LAMLOM M., & AHMED A. Effect of sesame-tomatoes intercropping systems under different dates of sesame on improving productivity of crops. Egyptian Journal of Agricultural Research, 2021, 99(1): 108-117. https://doi.org/10.21608/ejar.2021.50952.1044
SAVITA J., CHOUDHARY A. K., SINGH N. M., and KUMAR A. Scientific Cultivation of Cauliflower (Brassica oleracea L. var. botrytis). In: CHOUDHARY A. K., RANA K. S., DASS A., and SRIVASTAV M. (eds.) Advances in Vegetable Agronomy. Post Graduate School, Indian Agricultural Research Institute; Indian Council of Agricultural Research, Department of Agricultural Research and Education Ministry of Agriculture, Government of India, New Delhi, 2014: 67-78. https://www.researchgate.net/publication/330564347_Scientific_Cultivation_of_Cauliflower_Brassica_oleracea_L_var_botrytis
VAN LOON M. P., SCHIEVING F., RIETKERK M., DEKKER S. C., STERCK F., and ANTEN N. P. R. How light competition between plants affects their response to climate change. New Phytologist, 2014, 203(4): 1253–1265. https://doi.org/10.1111/nph.12865
LIU M., HAN G., and ZHANG Q. Effects of Soil Aggregate Stability on Soil Organic Carbon and Nitrogen under Land Use Change in an Erodible Region in Southwest China. International Journal of Environmental Research and Public Health, 2019, 16(20): 3809. https://doi.org/10.3390/ijerph16203809
MIGUEZ F., ARCHONTOULIS S., and DOKOOHAKI H. Nonlinear Regression Models and Applications. In: GLAZ B., & YEATER K. M. (eds.) Applied Statistics in Agricultural, Biological, and Environmental Sciences. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, 2018: 401–447. https://doi.org/10.2134/appliedstatistics.2016.0003.c15
AJAYAKUMAR M. Y., UMESH M. R., SHIVALEELA S., and NIDAGUNDI J. M. Light interception and yield response of cotton varieties to high density planting and fertilizers in sub-tropical India. Journal of Applied and Natural Science, 2017, 9(3): 1835–1839. https://doi.org/10.31018/jans.v9i3.1448
HARDWICK S. R., TOUMI R., PFEIFER M., TURNER E. C., NILUS R., and EWERS R. M. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 2015, 201: 187–195. https://doi.org/10.1016/j.agrformet.2014.11.010
Refbacks
- There are currently no refbacks.