Envisioning Artificial Intelligence Possibilities for Tracking Eidolon Helvum Bats: A Review
Abstract
Artificial intelligence (AI) is rapidly assuming significant responsibilities because it can be used to curate data on wildlife observations, migration patterns, ecological population monitoring, and behavior understanding. In this study, current trends in how artificial intelligence is used to understand activities of Eidolon helvum fruit bats are discussed. This study reviewed 122 publications related to bats and their environment. Of these publications, only 20 (16%) used machine learning to assess bat activities ranging from specie classification to sound signal processing. In addition, we listed the most widely used machine learning methods and justified their application to ecological research. Furthermore, the study identified other AI-based technology like edge computing and the internet of things (IoT) as new opportunities in ecological research. In conclusion, this study anticipates the joint use of cutting-edge technologies such as TinyML for ecological research and conservation and the need for innovative methods and AI-driven solutions to track wildlife demographics.
Keywords: artificial intelligence, ecology, biodiversity, pattern recognition, wildlife.
Full Text:
PDFReferences
WU H., JIANG T., LIU S., LU G., and FENG J. Acoustic identification of two morphologically similar bat species, Miniopterus magnater and Miniopterus fuliginosus (Chiroptera, Miniopteridae). Mammalia, 2020, 84(2): 201-206. https://doi.org/10.1515/mammalia-2018-0197
JEBB D., HUANG Z., PIPPEL M., HUGHES G. M., LAVRICHENKO K., DEVANNA P., WINKLER S., JERMIIN L. S., SKIRMUNTT E. C., KATZOURAKIS A., BURKITT-GRAY L., RAY D. A., SULLIVAN K. A. M., ROSCITO J. G., KIRILENKO B. M., DÁVALOS L. M., CORTHALS A. P., POWER M. L., JONES G., RANSOME R. D., DECHMANN D. K. N., LOCATELLI A. G., PUECHMAILLE S. J., FEDRIGO O., JARVIS E. D., HILLER M., VERNES S. C., MYERS E. W., and TEELING E. C. Six reference-quality genomes reveal evolution of bat adaptations. Nature, 2020, 583(7817): 578-584. https://doi.org/10.1038/s41586-020-2486-3
WRIGHT P. G., HAMILTON P. B., SCHOFIELD H., GLOVER A., DAMANT C., DAVIDSON-WATTS I., and MATHEWS F. Genetic structure and diversity of a rare woodland bat, Myotis bechsteinii: comparison of continental Europe and Britain. Conservation Genetics, 2018, 19(4): 777-787. https://doi.org/10.1007/S10592-018-1053-Z
AHMAD Z., ABBASI M. H., AHMAD S. R., and SHEIKH N. Molecular classification and comparative phylogeographic study of insectivorous bat species (Pipisitrellus coromandra) from Punjab, Pakistan. Brazilian Journal of Biology, 2021, 82: e240725. https://doi.org/10.1590/1519-6984.240725
TEELING E. C., VERNES S. C., DÁVALOS L. M., RAY D. A., GILBERT M. T. P., MYERS E., and BAT1K CONSORTIUM. Bat biology, genomes, and the Bat1K project: to generate chromosome-level genomes for all living bat species. Annual Review of Animal Biosciences, 2018, 6: 23-46. https://doi.org/10.1146/annurev-animal-022516
HUANG Z., TEELING E. C., and CAINE M. Bat genomes: unveiling the secrets of their superpowers. TheScienceBreaker, 2021. https://doi.org/10.25250/thescbr.brk556
BOEHNEN M. How Bats Are Different. JD Supra, 2020. https://www.jdsupra.com/legalnews/how-bats-are-different-87298/
MANDL J. N., SCHNEIDER C., SCHNEIDER D. S., and BAKER M. L. Going to bat(s) for studies of disease tolerance. Frontiers in Immunology, 2018, 9: 2112. https://doi.org/10.3389/fimmu.2018.02112
IRVING A. T., AHN M., GOH G., ANDERSON D. E., and WANG L. F. Lessons from the host defences of bats, a unique viral reservoir. Nature, 2021, 589(7842): 363-370. https://doi.org/10.1038/s41586-020-03128-0
POWER M. L., FOLEY N. M., JONES G., and TEELING E. C. Taking flight: an ecological, evolutionary and genomic perspective on bat telomeres. Molecular Ecology, 2022, 31(23): 6053-6068. https://doi.org/10.1111/mec.16117
FENTON M. B. The World through a Bat's Ear. Science, 2011, 333(6042): 528-529. https://doi.org/10.1126/science.1209933
SOLIMAN K. M., & EMAM W. W. Bats and Ecosystem Management. In: MIKKOLA H. (ed.) Bats - Disease-Prone but Beneficial. IntechOpen, London, 2022. https://doi.org/10.5772/intechopen.101600
KUNZ T. H., BRAUN DE TORREZ E., BAUER D., LOBOVA T., and FLEMING T. H. Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 2011, 1223(1): 1-38. https://doi.org/10.1111/J.1749-6632.2011.06004.X
NATIONAL PARK SERVICE. Benefits of Bats, 2020. https://www.nps.gov/subjects/bats/benefits-of-bats.htm
BAT CONSERVATION TRUST. Bats as seed dispersers and reforesters. https://www.bats.org.uk/about-bats/why-bats-matter/bats-as-seed-dispersers-and-reforesters
AZIZ S. A., MCCONKEY K. R., TANALGO K., SRITONGCHUAY T., LOW M.-R., YONG J. Y., MILDENSTEIN T. L., NUEVO-DIEGO C. E., LIM V.-C., and RACEY P. A. The critical importance of Old World fruit bats for healthy ecosystems and economies. Frontiers in Ecology and Evolution, 2021, 9: 641411. https://doi.org/10.3389/fevo.2021.641411
MONADJEM A., COHEN L., JACOBS D., MACEWAN K., RICHARDS L. R., SCHOEMAN C., SETHUSA T., and TAYLOR P. J. A conservation assessment of Eidolon helvum. In: CHILD M. F., ROXBURGH L., DO LINH SAN E., RAIMONDO D., and DAVIES-MOSTERT H. T. (eds.) The Red List of Mammals of South Africa, Swaziland and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, South Africa, 2016.
PEEL A. J., SARGAN D. R., BAKER K. S., HAYMAN D. T. S., BARR J. A., CRAMERI G., SUU-IRE R., BRODER C. C., LEMBO T., WANG L.-F., FOOKS A. R., ROSSITER S. J., WOOD J. L. N., and CUNNINGHAM A. A. Continent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses. Nature Communications, 2013, 4(1): 2770. https://doi.org/10.1038/ncomms3770
HAYMAN D. T., & PEEL A. J. Can survival analyses detect hunting pressure in a highly connected species? Lessons from straw-coloured fruit bats. Biological Conservation, 2016, 200: 131-139. https://doi.org/10.1016/j.biocon.2016.06.003
OLATIMEHIN A., SHITTU A. O., ONWUGAMBA F. C., MELLMANN A., BECKER K., and SCHAUMBURG F. Staphylococcus aureus complex in the straw-colored fruit bat (Eidolon helvum) in Nigeria. Frontiers in Microbiology, 2018, 9: 162. https://doi.org/10.3389/fmicb.2018.00162
OSSA G., KRAMER-SCHADT S., PEEL A. J., SCHARF A. K., and VOIGT C. C. The Movement Ecology of the Straw-Colored Fruit Bat, Eidolon Helvum, in Sub-Saharan Africa Assessed by Stable Isotope Ratios. PLoS ONE, 2012, 7(9): e45729. https://doi.org/10.1371/journal.pone.0045729
OGILVIE P. W., & OGILVIE M. B. Observations of a roost of yellow or giant fruit-eating bats, Eidolon helvum. Journal of Mammalogy, 1964, 45(2): 309-311. https://doi.org/10.2307/1377005
MCGUIRE L. P. Physiological ecology of bat migration. PhD thesis, University of Western Ontario, 2012. https://ir.lib.uwo.ca/etd/431/
HAYMAN D. T., MCCREA R., RESTIF O., SUU-IRE R., FOOKS A. R., WOOD J. L., CUNNINGHAM A. A., and ROWCLIFFE J. M. Demography of straw-colored fruit bats in Ghana. Journal of Mammalogy, 2012, 93(5): 1393-1404. https://doi.org/10.1644/11-mamm-a-270.1
RICHTER H. V., & CUMMING G. S. First application of satellite telemetry to track African straw‐coloured fruit bat migration. Journal of Zoology, 2008, 275(2): 172-176. https://doi.org/10.1111/J.1469-7998.2008.00425.x
MAC AODHA O., GIBB R., BARLOW K. E., BROWNING E., FIRMAN M., FREEMAN R., HARDER B., KINSEY L., MEAD G. R., NEWSON S. E., and PANDOURSKI I. Bat detective—Deep learning tools for bat acoustic signal detection. PLoS Computational Biology, 2018, 14(3): e1005995. https://doi.org/10.1371/journal.pcbi.1005995
CURRY D. AI Bat Sensor to Monitor Social Distancing in Offices. RTInsights, 2020. https://www.rtinsights.com/ai-bat-social-distancing/
TUIA D., KELLENBERGER B., BEERY S., COSTELLOE B. R., ZUFFI S., RISSE B., MATHIS A., MATHIS M. W., VAN LANGEVELDE F., BURGHARDT T., and KAYS R. Perspectives in machine learning for wildlife conservation. Nature Communications, 2022, 13(1): 1-15. https://doi.org/10.1038/s41467-022-27980-y
MCCLURE E. C., SIEVERS M., BROWN C. J., BUELOW C. A., DITRIA E. M., HAYES M. A., PEARSON R. M., TULLOCH V. J., UNSWORTH R. K., and CONNOLLY R. M. Artificial intelligence meets citizen science to supercharge ecological monitoring. Patterns, 2020, 1(7): 100109. https://doi.org/10.1016/j.patter.2020.100109
MAX PLANCK SOCIETY. Fruit bats are reforesting African woodlands, 2019. https://phys.org/news/2019-04-fruit-reforesting-african-woodlands.html
BAT CONSERVATION TRUST. Classifying bats. https://www.bats.org.uk/about-bats/what-are-bats/classifying-bats
KUNZ T. H., BRAUN DE TORREZ E., BAUER D., LOBOVA T., and FLEMING T. H. Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 2011, 1223(1): 1-38. https://doi.org/10.1111/j.1749-6632.2011.06004.x
NATIONAL WILDLIFE CONTROL TRAINING PROGRAM. Bats. https://wildlifecontroltraining.com/wildlife-species/bats/
MORTON M C. Mysterious disease sounds the death knell for bats, 2012. https://www.earthmagazine.org/article/mysterious-disease-sounds-death-knell-bats/
HAND S. J., WEISBECKER V., BECK R. M., ARCHER M., GODTHELP H., TENNYSON A. J., and WORTHY T. H. Bats that walk: a new evolutionary hypothesis for the terrestrial behaviour of New Zealand's endemic mystacinids. BMC Evolutionary Biology, 2009, 9: 169. https://doi.org/10.1186/1471-2148-9-169
ANDERMANN T., FAURBY S., TURVEY S. T., ANTONELLI A., and SILVESTRO D. The past and future human impact on mammalian diversity. Science Advances, 2020, 6(36): eabb2313. https://doi.org/10.1126/sciadv.abb2313
KALKA M. New respect for tropical bats: Demonstrating the value of insect-eating bats. Bats, 2008, 26(2): 1-3. https://www.batcon.org/wp-content/uploads/2020/04/BATSSummer08.pdf
KOLKERT H., ANDREW R., SMITH R., RADER R., and REID N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecology and Evolution, 2020, 10(1): 371-388. https://doi.org/10.1002/ece3.5901
GONSALVES L., BICKNELL B., LAW B., WEBB C., and MONAMY V. Mosquito consumption by insectivorous bats: does size matter? PLoS ONE, 2013, 8(10): e77183. https://doi.org/10.1371/journal.pone.0077183
AUGUST T. A., PESCOTT O. L., JOLY A., and BONNET P. AI naturalists might hold the key to unlocking biodiversity data in social media imagery. Patterns, 2020, 1(7): 100116. https://doi.org/10.1016/j.patter.2020.100116
SANTANA S. E., & CHEUNG E. Go big or go fish: morphological specializations in carnivorous bats. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1830): 20160615. https://doi.org/10.1098/rspb.2016.0615
NUWER R. The World’s Carnivorous Bats Are Emerging from the Dark. Smithsonian Magazine, 2016. https://www.smithsonianmag.com/science-nature/worlds-carnivorous-bats-are-emerging-dark-180959042/
MELLO M. A. R., MARQUITTI F. M. D., GUIMARAES JR P. R., KALKO E. K. V., JORDANO P., and DE AGUIAR M. A. M. The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS ONE, 2011, 6(2): e17395. https://doi.org/10.1371/journal.pone.0017395
MAX-PLANCK-GESELLSCHAFT. Fruit bats are reforesting African woodlands, 2019. https://www.mpg.de/13271542/fruit-bats-seed-dispersal
ISABELLE D. A., & WESTERLUND M. A review and categorization of artificial intelligence-based opportunities in wildlife, ocean and land conservation. Sustainability, 2022, 14(4): 1979. https://doi.org/10.3390/su14041979
FLEMING T. H. Fruit bats: prime movers of tropical seeds. Bats, 1987, 5(3): 3-8.
BAT. https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/b/Bat.htm
BAT RESCUE INC. About Bats. https://batrescue.org.au/about-bats/
ALL ABOUT BATS. Biology. https://www.allaboutbats.org.au/biology/
WUND M., & MYERS P. Chiroptera. Animal Diversity Web, 2005. https://animaldiversity.org/accounts/Chiroptera/
WOO P. C. Y., & LAU S. K. P. Viruses and Bats. Viruses, 2019, 11(10): 884. https://doi.org/10.3390/V11100884
SUGA N. Echolocation II: Neurophysiology. In: SQUIRE L. R. (ed.) Encyclopedia of Neuroscience. Academic Press, 2009: 801–812. https://doi.org/10.1016/b978-008045046-9.00953-0
SPRINGER M. S. Phylogenetics: bats united, microbats divided. Current Biology, 2013, 23(22): R999-R1001. https://doi.org/10.1016/j.cub.2013.09.053
SHEN Y. Y., LIU J., IRWIN D. M., and ZHANG Y. P. Parallel and Convergent Evolution of the Dim-Light Vision Gene RH1 in Bats (Order: Chiroptera). PLoS ONE, 2010, 5(1): e8838. https://doi.org/10.1371/journal.pone.0008838
NIKAIDO M., KONDO S., ZHANG Z., WU J., NISHIHARA H., NIIMURA Y., SUZUKI S., TOUHARA K., SUZUKI Y., NOGUCHI H., and MINAKUCHI Y. Comparative genomic analyses illuminate the distinct evolution of megabats within Chiroptera. DNA Research, 2020, 27(4): dsaa021. https://doi.org/10.1093/dnares/dsaa021
SMITH J. D., & GREGORY T. R. The genome sizes of megabats (Chiroptera: Pteropodidae) are remarkably constrained. Biology Letters, 2009, 5(3): 347-351. https://doi.org/10.1098/rsbl.2009.0016
DUHART C., DUBLON G., MAYTON B., DAVENPORT G., and PARADISO J. A. Deep learning for wildlife conservation and restoration efforts. Proceedings of the International Conference on Machine Learning, Long Beach, California, 2018. https://hal.science/hal-04591082/document
TINYML. tinyML EMEA Technical Forum 2021, 2021. https://www.tinyml.org/event/emea-2021/
THIAGAVEL J. Sensory and Cognitive Constraints and Opportunities in Bats. PhD thesis, University of Toronto, 2019. https://www.proquest.com/openview/9e753910ce412e6d03c6edbc73ac5ccc/1?pq-origsite=gscholar&cbl=18750&diss=y
EITING T. P., & GUNNELL G. F. Global completeness of the bat fossil record. Journal of Mammalian Evolution, 2009, 16: 151-173. https://doi.org/10.1007/s10914-009-9118-x
BOONMAN A., BAR-ON Y., CVIKEL N., and YOVEL Y. It's not black or white—on the range of vision and echolocation in echolocating bats. Frontiers in Physiology, 2013, 4: 248. https://doi.org/10.3389/fphys.2013.00248
YOVEL Y., GEVA-SAGIV M., and ULANOVSKY N. Click-based echolocation in bats: not so primitive after all. Journal of Comparative Physiology A, 2011, 197: 515-530. https://doi.org/10.1007/S00359-011-0639-4
THALER L., & GOODALE M. A. Echolocation in humans: an overview. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7(6): 382-393. https://doi.org/10.1002/wcs.1408
LEE W. J., FALK B., CHIU C., KRISHNAN A., ARBOUR J. H., and MOSS C. F. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat. PLoS Biology, 2017, 15(12): e2003148. https://doi.org/10.1371/journal.pbio.2003148
LEW D., & LIM B. K. Mammals. In: RULL V., VEGAS-VILARRÚBIA T., HUBER O., and SEÑARIS C. (eds.) Biodiversity of Pantepui: The Pristine “Lost World” of the Neotropical Guiana Highlands. Academic Press, 2019: 333–371. https://doi.org/10.1016/B978-0-12-815591-2.00014-8
HAYMAN D. T. S., & JOHNSON N. Nipah virus: a virus with multiple pathways of emergence. In: JOHNSON N. (ed.) The role of animals in emerging viral diseases. Academic Press, 2014: 293-315. https://doi.org/10.1016/b978-0-12-405191-1.00011-9
RANDHAWA N., BIRD B. H., VANWORMER E., SIJALI Z., KILONZO C., MSIGWA A., EKIRI A. B., SAMSON A., EPSTEIN J. H., WOLKING D. J., and SMITH W. A. Fruit bats in flight: a look into the movements of the ecologically important Eidolon helvum in Tanzania. One Health Outlook, 2020, 2: 16. https://doi.org/10.1186/s42522-020-00020-9
SHIVAPRAKASH K. N., SWAMI N., MYSOREKAR S., ARORA R., GANGADHARAN A., VOHRA K., JADEYEGOWDA M., and KIESECKER J. M. Potential for artificial intelligence (AI) and machine learning (ML) applications in biodiversity conservation, managing forests, and related services in India. Sustainability, 2022, 14(12): 7154. https://doi.org/10.3390/su14127154
ODUKOYA S. A., OFUSORI D. A., ADEEYO O. A., AYOKA O. A., ABAYOMI T. A., AJAYI S. A., and FALANA B. A. Comparative biochemical studies of the pregnant and non pregnant uterine limbs of the frugivorous bat, Eidolon helvum. Journal of Cell and Animal Biology, 2009, 3(10): 175-178. https://doi.org/10.5897/JCAB.9000034
DECHMANN D., & VAN TOOR M. Fruit bats: the winged ‘conservationists’ reforesting parts of Africa. The Conversation, 2022. https://theconversation.com/fruit-bats-the-winged-conservationists-reforesting-parts-of-africa-183274
ABEDI-LARTEY M., DECHMANN D. K., WIKELSKI M., SCHARF A. K., and FAHR J. Long-distance seed dispersal by straw-coloured fruit bats varies by season and landscape. Global Ecology and Conservation, 2016, 7: 12-24. https://doi.org/10.1016/j.gecco.2016.03.005
BUTLER R. A. Consequences of Deforestation. WorldRainforests.com, 2019. https://rainforests.mongabay.com/09-consequences-of-deforestation.html
FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. Climate-smart management of forest genetic resources. https://www.fao.org/climate-smart-agriculture-sourcebook/production-resources/module-b8-genetic-resources/chapter-b8-5/en/
DUCCI F. Genetic resources and forestry in the Mediterranean region in relation to global change. Annals of Silvicultural Research, 2015, 39(2): 70-93. https://doi.org/10.12899/asr-779
BROCKERHOFF E. G., BARBARO L., CASTAGNEYROL B., FORRESTER D. I., GARDINER B., GONZÁLEZ-OLABARRIA J. R., LYVER P. O. B., MEURISSE N., OXBROUGH A., TAKI H., and THOMPSON I. D. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 2017, 26: 3005-3035. https://doi.org/10.1007/s10531-017-1453-2
KONNERT M., FADY B., GÖMÖRY D., A’HARA S., WOLTER F., DUCCI F., KOSKELA J., BOZZANO M., MAATEN T., and KOWALCZYK J. Use and transfer of forest reproductive material in Europe in the context of climate change. European Forest Genetic Resources Programme (EUFORGEN), Bioversity International, Rome, 2015. https://www.euforgen.org/fileadmin/templates/euforgen.org/upload/Publications/Thematic_publications/EUFORGEN_FRM_use_transfer.pdf
SUU-IRE R. D., FOOKS A. R., BANYARD A. C., SELDEN D., AMPONSAH-MENSAH K., RIESLE S., ZIEKAH M. Y., NTIAMOA-BAIDU Y., WOOD J. L., and CUNNINGHAM A. A. Lagos bat virus infection dynamics in free-ranging straw-colored fruit bats (Eidolon helvum). Tropical Medicine and Infectious Disease, 2017, 2(3): 25. https://doi.org/10.3390/tropicalmed2030025
HAYMAN D. T., LUIS A. D., RESTIF O., BAKER K. S., FOOKS A. R., LEACH C., HORTON D. L., SUU-IRE R., CUNNINGHAM A. A., WOOD J. L., and WEBB C. T. Maternal antibody and the maintenance of a lyssavirus in populations of seasonally breeding African bats. PLoS ONE, 2018, 13(6): e0198563. https://doi.org/10.1371/journal.pone.0198563
BONILLA-ALDANA D. K., JIMENEZ-DIAZ S. D., ARANGO-DUQUE J. S., AGUIRRE-FLOREZ M., BALBIN-RAMON G. J., PANIZ-MONDOLFI A., SUÁREZ J. A., PACHAR M. R., PEREZ-GARCIA L. A., DELGADO-NOGUERA L. A., and SIERRA M. A. Bats in ecosystems and their wide spectrum of viral infectious potential threats: SARS-CoV-2 and other emerging viruses. International Journal of Infectious Diseases, 2021, 102: 87-96. https://doi.org/10.1016/j.ijid.2020.08.050
HAYMAN D. T. S., BOWEN R. A., CRYAN P. M., MCCRACKEN G. F., O’SHEA T. J., PEEL A. J., GILBERT A., WEBB C. T., and WOOD J. L. N. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses and Public Health, 2013, 60(1): 2-21. https://doi.org/10.1111/zph.12000
SCHNEEBERGER K., & VOIGT C. C. Zoonotic Viruses and Conservation of Bats. In: VOIGT C., & KINGSTON T. (eds.) Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer, Cham, 2016: 263-292. https://doi.org/10.1007/978-3-319-25220-9_10
SUU-IRE R., OBODAI E., BEL-NONO S. O., AMPOFO W. K., MAZET J. A., GOLDSTEIN T., JOHNSON C. K., SMITH B., BOAATEMA L., ASIGBEE T. W., and AWUNI J. Surveillance for potentially zoonotic viruses in rodent and bat populations and behavioral risk in an agricultural settlement in Ghana. One Health Outlook, 2022, 4(1): 6. https://doi.org/10.1186/s42522-022-00061-2
BAKER K. S., TODD S., MARSH G. A., CRAMERI G., BARR J., KAMINS A. O., PEEL A. J., YU M., HAYMAN D. T., NADJM B., and MTOVE G. Novel, potentially zoonotic paramyxoviruses from the African straw-colored fruit bat Eidolon helvum. Journal of Virology, 2013, 87(3): 1348-1358. https://doi.org/10.1128/jvi.01202-12
ZUALKERNAN I., JUDAS J., MAHBUB T., BHAGWAGAR A., and CHAND P. An AIoT System for Bat Species Classification. Proceedings of the IEEE International Conference on Internet of Things and Intelligence System, Bali, 2021, pp. 155-160. https://doi.org/10.1109/iotais50849.2021.9359704
REDGWELL R. D., SZEWCZAK J. M., JONES G., and PARSONS S. Classification of echolocation calls from 14 species of bat by support vector machines and ensembles of neural networks. Algorithms, 2009, 2(3): 907-924. https://doi.org/10.3390/a2030907
MASUDA K., MATSUI T., FUKUI D., FUKUI K., and MACHIMURA T. Bat species classification by echolocation call using a machine learning system. Mammalian Science, 2017, 57(1): 19–33. https://doi.org/10.11238/mammalianscience.57.19
LI T., ALIPOUR M., DONALDSON B. M., and HARRIS D. K. Deep learning-based visual identification of signs of bat presence in bridge infrastructure images: A transfer learning approach. Transportation Research Record, 2021, 2675(12): 939-951. https://doi.org/10.1177/03611981211031904
YOH N., KINGSTON T., MCARTHUR E., AYLEN O. E., HUANG J. C. C., JINGGONG E. R., KHAN F. A. A., LEE B. P., MITCHELL S. L., BICKNELL J. E., and STRUEBIG M. J. A machine learning framework to classify Southeast Asian echolocating bats. Ecological Indicators, 2022, 136: 108696. https://doi.org/10.1016/j.ecolind.2022.108696
WILSON J. W., & PRIMACK R. B. (eds.) Conservation Biology in Sub-Saharan Africa. Open Book Publishers, Cambridge, 2019. https://books.openedition.org/obp/10352
COSTA T. D., SANTOS C. D., RAINHO A., ABEDI-LARTEY M., FAHR J., WIKELSKI M., and DECHMANN D. K. Assessing roost disturbance of straw-coloured fruit bats (Eidolon helvum) through tri-axial acceleration. PLoS ONE, 2020, 15(11): e0242662. https://doi.org/10.1371/journal.pone.0242662
LI T. Artificial intelligence can help highway departments find bats roosting under bridges. The Conversation, 2021. https://theconversation.com/artificial-intelligence-can-help-highway-departments-find-bats-roosting-under-bridges-166806
ABEDI-LARTEY M. Quantifying the ecological impact of the straw-coloured fruit bat (Eidolon helvum) in West Africa. Doctoral thesis, University of Konstanz, 2016. https://kops.uni-konstanz.de/handle/123456789/35007
ENCYCLOPEDIA OF LIFE. African Straw Colored Fruit Bat. https://eol.org/pages/327335/articles
FAHR J., ABEDI-LARTEY M., ESCH T., MACHWITZ M., SUU-IRE R., WIKELSKI M., and DECHMANN D. K. Pronounced seasonal changes in the movement ecology of a highly gregarious central-place forager, the African straw-coloured fruit bat (Eidolon helvum). PLoS ONE, 2015, 10(10): e0138985. https://doi.org/10.1371/journal.pone.0138985
VAN TOOR M. L., O’MARA M. T., ABEDI-LARTEY M., WIKELSKI M., FAHR J., & DECHMANN D. K. Linking colony size with quantitative estimates of ecosystem services of African fruit bats. Current Biology, 2019, 29(7): R237-R238. https://doi.org/10.1016/j.cub.2019.02.033
PRADANA D. H., & TSANG S. M. The role of fruit bats in plant community changes in an urban forest in Indonesia. Raffles Bulletin of Zoology, 2017, 65: 497-505. https://lkcnhm.nus.edu.sg/wp-content/uploads/sites/10/app/uploads/2017/04/65rbz497-505.pdf
RICHTER H. V., & CUMMING G. S. Food availability and annual migration of the straw‐colored fruit bat (Eidolon helvum). Journal of Zoology, 2006, 268(1): 35-44. https://doi.org/10.1111/j.1469-7998.2005.00020.x
OSSA G., KRAMER-SCHADT S., PEEL A. J., SCHARF A. K., and VOIGT C. C. The Movement Ecology of the Straw-Colored Fruit Bat, Eidolon Helvum, in Sub-Saharan Africa Assessed by Stable Isotope Ratios. PLoS ONE, 2012, 7(9): e45729. https://doi.org/10.1371/journal.pone.0045729
MANDL I., HOUMADI A., SAID I., ABDOU B. B. A., FARDANE A. K., EGGER-PEITLER K., OLEKSY R., DOULTON H., and CHAIHANE S. S. A. Using GPS tracking for fruit bat conservation. Oryx, 2022, 56(1): 50-53. https://doi.org/10.1017/S0030605320000563
PAKUŁA M., PIELASZKIEWICZ M., and FURMANKIEWICZ J. Offshore Observation of the African Straw-Coloured Fruit Bat Eidolon Helvum (Kerr, 1792) in the Gulf of Guinea. African Bat Conservation News, 2017, 46: 2–4.
O'MARA M. T., SCHARF A. K., FAHR J., ABEDI-LARTEY M., WIKELSKI M., DECHMANN D. K., and SAFI K. Overall dynamic body acceleration in straw-colored fruit bats increases in headwinds but not with airspeed. Frontiers in Ecology and Evolution, 2019, 7: 200. https://doi.org/10.3389/fevo.2019.00200
O’MARA M. T., & DECHMANN D. K. N. Resting together, foraging apart: Network structure of foraging bats is not explained by energy expenditure or foraging efficiency, 2021. https://doi.org/10.1101/2021.09.30.462631
O'MARA M. T., WIKELSKI M., and DECHMANN D. K. 50 years of bat tracking: device attachment and future directions. Methods in Ecology and Evolution, 2014, 5(4): 311-319. https://doi.org/10.1111/2041-210X.12172
ISRAEL D. Tracking system used in HU study uncovers intricate navigation of fruit bats. Canadian Friends of the Hebrew University of Jerusalem, 2020. https://www.cfhu.org/news/tracking-system-used-in-hu-study-uncovers-intricate-navigation-of-fruit-bats/
COSTA T. D., SANTOS C. D., RAINHO A., ABEDI-LARTEY M., FAHR J., WIKELSKI M., and DECHMANN D. K. Assessing roost disturbance of straw-coloured fruit bats (Eidolon helvum) through tri-axial acceleration. PLoS ONE, 2020, 15(11): e0242662. https://doi.org/10.1371/journal.pone.0242662
WIERINGA J. G., NAGEL J., NELSON D. M., CARSTENS B. C., and GIBBS H. L. Using trace elements to identify the geographic origin of migratory bats. PeerJ, 2020, 8: e10082. https://doi.org/10.7717/peerj.10082
CONENNA I., LÓPEZ-BAUCELLS A., ROCHA R., RIPPERGER S., and CABEZA M. Movement seasonality in a desert-dwelling bat revealed by miniature GPS loggers. Movement Ecology, 2019, 7: 27. https://doi.org/10.1186/S40462-019-0170-8
VOIGT C. C., FRICK W. F., HOLDERIED M. W., HOLLAND R., KERTH G., MELLO M. A., PLOWRIGHT R. K., SWARTZ S., and YOVEL Y. Principles and patterns of bat movements: from aerodynamics to ecology. The Quarterly Review of Biology, 2017, 92(3): 267-287. https://doi.org/10.1086/693847
VALLETTA J. J., TORNEY C., KINGS M., THORNTON A., and MADDEN J. Applications of machine learning in animal behaviour studies. Animal Behaviour, 2017, 124: 203-220. https://doi.org/10.1016/j.anbehav.2016.12.005
WEINSTEIN B. G. A computer vision for animal ecology. Journal of Animal Ecology, 2018, 87(3): 533-545. https://doi.org/10.1111/1365-2656.12780
CHRISTIN S., HERVET É., and LECOMTE N. Applications for deep learning in ecology. Methods in Ecology and Evolution, 2019, 10(10): 1632-1644. https://doi.org/10.1111/2041-210X.13256
FARLEY S. S., DAWSON A., GORING S. J., and WILLIAMS J. W. Situating ecology as a big-data science: Current advances, challenges, and solutions. BioScience, 2018, 68(8): 563-576. https://doi.org/10.1093/biosci/biy068
PETERS D. P., HAVSTAD K. M., CUSHING J., TWEEDIE C., FUENTES O., and VILLANUEVA-ROSALES N. Harnessing the power of big data: infusing the scientific method with machine learning to transform ecology. Ecosphere, 2014, 5(6): 1-15. https://doi.org/10.1890/ES13-00359.1
JIMÉNEZ-VALVERDE A., LOBO J., and HORTAL J. The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecology, 2009, 10(2): 196-205. https://doi.org/10.1556/comec.10.2009.2.9
GUISAN A., & ZIMMERMANN N. E. Predictive habitat distribution models in ecology. Ecological Modelling, 2000, 135(2-3): 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9
SMOLIŃSKI S., & RADTKE K. Spatial prediction of demersal fish diversity in the Baltic Sea: comparison of machine learning and regression-based techniques. ICES Journal of Marine Science, 2017, 74(1): 102-111. https://doi.org/10.1093/icesjms/fsw136
PARRAVICINI V., KULBICKI M., BELLWOOD D. R., FRIEDLANDER A. M., ARIAS‐GONZALEZ J. E., CHABANET P., FLOETER S. R., MYERS R., VIGLIOLA L., D’AGATA S., and MOUILLOT D. Global patterns and predictors of tropical reef fish species richness. Ecography, 2013, 36(12): 1254-1262. https://doi.org/10.1111/J.1600-0587.2013.00291.x
BALTENSPERGER A. P., & HUETTMANN F. Predictive spatial niche and biodiversity hotspot models for small mammal communities in Alaska: applying machine-learning to conservation planning. Landscape Ecology, 2015, 30: 681-697. https://doi.org/10.1007/S10980-014-0150-8
RAY P. P. A review on TinyML: State-of-the-art and prospects. Journal of King Saud University - Computer and Information Sciences, 2022, 34(4): 1595-1623. https://doi.org/10.1016/j.jksuci.2021.11.019
Refbacks
- There are currently no refbacks.